The GRAPE project: Current Status

Junichiro Makino
Department of Astronomy,
School of Science, University of Tokyo,
Tokyo 133-0033, Japan
Email: makino@grape.astron.s..u-tokyo.ac.jp

Abstract

We will briefly overview the history and the present
status of the GRAPE project. GRAPE (GRAvity
piPE) project is a project to design, develop and
use special-purpose computers for astrophysical N-
body simulations to do large-scale N-body simulations.
Our first machine, GRAPE-1, was completed in 1989
and offered the speed of 240 Mflops. Since then, we
have continued to develop newer and faster machines,
and the newest machine, the GRAPE-6, has achieved
the peak speed of 64 Tflops. We will briefly discuss
GRAPE-6 and its parallel architecture.

1 Introduction

In this paper, we give an overview of the present
status and the future of the GRAPE project[8, 6].
GRAPE (GRAvity piPE) is a special-purpose com-
puter for simulation of particles interacting through
gravitational force. Many astronomical objects, from
satellites and rings of planets to large scale structures
of the universe, can be expressed as systems of particles
interacting through gravity (and in some cases other
short-range interactions). Since the gravitational force
is a long-range force, the calculation of the gravita-
tional interaction dominates the total calculation time.

A naive approach would cost O(N?) calculation
time, where N is the number of particles. It is certainly
possible to use fast algorithms such as Barnes-Hut tree
algorithm or FMM, which reduce the calculation cost
from O(N?) to O(N log N) or even O(N). However,
even with such schemes, the calculation of particle-
particle interaction is still the most expensive part of
the calculation.

One approach to accelerate N-body simulation is,
therefore, to accelerate the force calculation by means
of a dedicated hardware. Since the calculation of gravi-
tational interaction between particles is relatively sim-
ple, requiring some 30 arithmetic operations, we can
develop a specialized pipelined processor for force cal-
culation. Such a pipelined processor can integrate

fairly large number of arithmetic units, which all oper-
ate in parallel to achieve high performance. The basic
ideal behind our GRAPE (GRAvity piPE) hardware
is to develop such a simple and specialized processor
and use it in conjunction with general-purpose pro-
grammable computer which handles everything other
than the force calculation.

In section 2 we give a overview of basic concept
of GRAPE hardware. In section 3 we describe the
GRAPE-6 system, which is completed recently. Sec-
tion 4 is for summary.

2 Overview of GRAPE hardware and
software

2.1 Astrophysical N-body problem

The master equation for the gravitational N-body
problem is given by:

d*x; X — X;
——t ==Y Gm; L= 1
dt2 ; J |Xj _Xi|3 ()

where x; and m; are the position and mass of the par-
ticle with index ¢ and G is the gravitational constant.
The summation is taken over all particles (typically
stars) in the system under study.

The number of particles N varies widely depending
on the kind of systems studied. A small star cluster
like Hyades might consist of several thousand stars.
Globular clusters typically contain one million stars,
and galaxies hundreds of billions of stars. In the case
of galaxies, it is impossible to model them in a star-
by-star basis, and we model the distribution of stars
in the six-dimensional phase space with much smaller
number of particles.

If N is larger than several tens, the calculation cost
of the right hand side of equation (1) dominates the
total calculation cost. If N is very large, we could
use sophisticated algorithms such as the Barnes-Hut
treecode[3], FMM[4], or the particle-mesh method.
However, with treecode or FMM, the direct evaluation

x, m

Host
GRAPE

Computer
P a, |

Figure 1: Basic idea of GRAPE.

of gravitational interaction between near-neighbor par-
ticles still dominates the total cost. Even in the case
of the particle mesh method, if we want high accuracy,
near-neighbor interaction must be calculated directly.

A more subtle characteristic of the gravitational
force is that it is attractive and diverges for the limit of
zero distance. This means that two particles can come
arbitrary close, depending on their relative angular mo-
mentum, and thus reaching to arbitrary high velocity.
In addition, self-gravitating systems tend to be highly
inhomogeneous, because the homogeneous state is un-
stable. These characteristics implies the timescales of
particles vary rather widely, and we need a time inte-
gration scheme which can vary the timesteps of parti-
cles individually [1, 2].

2.2 Special-purpose hardware

Figure 1 show the basic concept of the GRAPE
hardware. The GRAPE part performs only the force
calculation, and the general-purpose host computer
performs all other calculations. With small changes in
algorithm and hardware, we can use both the Barnes-
Hut treecode (and in principle FMM) and the individ-
ual timestep algorithm, with quite high efficiency.

Clearly, the performance of the GRAPE part should
be much higher than that of the general-purpose host
computer, since otherwize there is no reason to use
the GRAPE part. An obvious question is how we can
achieve the performance higher than that of the most
advanced microprocessors.

Figure 2 shows the maximum number of floating
point operations performed per clock cycle for repre-
sentative microprocessors. The increase in the opera-
tion count per cycle was very fast, until it reaches two
(one addition and one multiplication) by 1990. Then
the increase stalled, and in 1990s there was essentially
no increase. Even in the year 2002, there is no micro-
processor which can perform more than four floating
point operations per cycle.

In other words, practically all the increase in the
available number of transistors in 1990s was spent for
things other than the arithmetic units. There are two
reasons for this trend. The first one is the limit of
the off-chip memory bandwidth, which is much more
difficult to increase than the on-chip processing speed.
The second one is the problem of finding sufficient level
of parallelism from programs.

10 F T T~ T T T T T T T T 13
E + +
o * 3
19 3
>]
O L 4
FRCAN: 3
(o] F 3
81 L]
= 0.01 3
107 3
10—4-. R T
1980 1990 2000

Year

Figure 2: The evolution of the maximum number of
floating point operations performed on representative
microprocessors, plotted versus time. open circles are
the values of actual processors. Arrows indicates the
trends.

Thus, even though the theoretical peak performance
of microprocessors has been, and will be, increasing,
that fact does not imply that they make good use of
the device technology. Quite the contrary, they are
using ever diminishing fraction of total silicon to do
useful floating point operations.

Here is the key for the success of special-purpose
computers. If the architecture of the special-purpose
computer allows a more efficient use of available tran-
sistors than general-purpose microprocessors do, it
might be able to achieve better overall performance.

A chip specialized for the calculation of the particle-
particle interaction is ideal for the efficient use of the
transistors. A pipeline processor would need around
40 arithmetic unit, for the case of the simple gravity.
If we implement the Hermite scheme [5], we need to
calculate the first time derivative of the force, which
adds some 20 arithmetic units. Thus, a single pipeline
needs around 60 arithmetic units. We can use these
60 arithmetic units with very small additional control
logics, since all connections between arithmetic units
are just simple wires (except for some places where
pipeline registers are necessary). Thus, if the available
transistor count is large enough, it is straightforward
to implement a pipeline into a chip. Figure 3 shows
such a pipeline.

In the simplest case, this pipeline calculates the
force on one particle from all other particles in the sys-
tem. Thus, at each clock cycle, the pipeline receives
the data of one particle.

With the present device technology, we can fit mul-
tiple pipelines into a single chip. In this case, we
can make use of all pipelines just by letting different
pipelines calculate the forces on different processors.

Figure 3: Pipeline to calculate the gravitational force

and its time derivative.

Table 1: GRAPE hardwares

Low-accuracy series

Machine Date Speed
GRAPE-1 (89/4 — 89/10) 120 Mflops
GRAPE-1A (90/4 — 90/10) 240 Mflops
GRAPE-3 (90/9 — 91/9) 14 Gflops
GRAPE-3A (92/1 — 93/7) 6 Gflops/board
GRAPE-5 (96/8 — 99/4) 5Gflops/chip
High-accuracy series
Machine Date Speed
GRAPE-2 (89/8 — 90/5) 40 Mfops
GRAPE-2A (91/7 — 92/5) 180 Mflops
HARP-1 (92/7 — 93/3) 180 Mflops
GRAPE-4 (92/7 — 95/7) 1 Tfops
MD-GRAPE (94/7 — 95/4) 1Gflops/chip
GRAPE-6 (97/8 — 02/4) 64 Tflops

Thus, parallel pipelines can be implemented without
requiring higher memory bandwidth.

It is also possible to further reduce the required
memory bandwidth by letting one pipeline to calculate
the force on multiple particles. We call this technique
virtual multiple pipeline (VMP) [7]. It is rather similar
to simultaneous multithread approach, but the differ-
ence is that with our VMP approach the same data
from the memory is used by all virtual pipelines. Thus
we can reduce the required bandwidth. With multi-
thread architecture, each thread requires its own data
stream. Thus, though the requirement for the latency
is relaxed, the requirement for the bandwidth remains
the same.

Based on this rather simple principle, we started
the project to develop GRAPE hardwares in 1989.
The first machine, GRAPE-1, was built using ROM
chips and fixed-point ALU chips to implement pipeline.
GRAPE-3 is out first try to design custom LSI. The
GRAPE-3 chip integrated single pipeline, and achieved
the speed of 600 Mflops per chip in 1991. GRAPE-4 is
a massively parallel version, with 1792 chips each with
640 Mflops. GRAPE-4 was completed in 1995.

Table 1 lists the GRAPE hardwares developed so
far. Machines up to GRAPE-4 are described in [6] and
references therein.

SSRAM -
>9 Predictor
S8 Pipeline Force
ES Pipeline
=c
SSRAM
Network Interface|
To network

Figure 4: The GRAPE-6 processor chip.

3 GRAPE-6

GRAPE-6 is the successor of GRAPE-4, which has
achieved the peak speed of 1 Tflops in 1995. The pro-
cessor chip of GRAPE-4 implemented a single force
pipeline, which calculates the force between two parti-
cles in every three clock cycles using VMP. GRAPE-4
chip was made using a 1um design rule and the number
of transistors was around 400K.

3.1 GRAPE-6 chip and board

For GRAPE-6 chip, we used a 0.25um design rule.
As a result, we could use about 7 million transistors
in one chip to implement six pipelines each of which
can calculate one interaction per clock cycle. Also, the
clock speed was increased from 32 MHz of GRAPE-4 to
90 MHz. These two improvements combined give a fac-
tor of 50 improvement in the speed of a chip. In other
words, single GRAPE-6 chip offers the speed slightly
faster than that of a single GRAPE-4 board with 48
GRAPE-4 chips.

Figure 4 shows the block diagram of the GRAPE-6
chip. A single GRAPE-6 chip integrates all basic func-
tions of a GRAPE system, including the interface to
memory chips and interface to the host. The memory
interface has the width of 72 bits (with ECC) and op-
erates at 90MHz. It takes 8 clock cycles to read the
data of one particle. Therefore, we use one pipeline as
eight virtual pipelines. One chip calculates the force
on 48 particles in parallel. If we assign 57 operations
for calculation of one interaction (this 57 comes from
recent Gordon-Bell Prize convention), the peak speed
of a chip operating at 90 MHz is 30.8 Gflops.

A GRAPE-6 chip also integrates the control log-
ics and a predictor pipeline. The predictor pipeline is
used to predict the positions and velocities of parti-
cles at the present time using 4th-order polynomials.
This function is used to implement individual timestep
algorithms [7].

The number format used in GRAPE-6 chip is rather
complex, since different parts of the pipeline use dif-

Figure 5: The GRAPE-6 processor module. Four large
chips on the top side are the processor chips.

ferent number format. The positions of particles are
expressed in 64-bit fixed-point format, and the veloc-
ity is expressed in 36-bit floating-point format (1-bit
sign, 11-bit exponent and 24-bit mantissa with bias-
corrected force-1 rounding). After initial subtractions,
calculations for force are done in this 36-bit floating-
point format, while that for the time derivative is done
with 20-bit mantissa. The final accumulation for force
and potential are done in 64-bit fixed-point format
with prescaling, so that the accumulator can handle
a wide range in the actual value of the force. The
prescaling factor can be specified for each particle. For
the time derivative, we use the same prescaling but
with 32-bit accumulators.

A single processor board of GRAPE-6 houses 32
GRAPE-6 chips, each with its own memory unit. The
board is connected to the external interface by one
broadcast network for data input and one reduction
network for data output. GRAPE-6 board is designed
so that different chips calculate the forces on the same
particles, but from different set of particles. Thus, it is
necessary to have an adder tree to take summation of
forces calculated on 32 different chips. This hardware
is implemented using FPGA chips from Altera. Since
we use the fixed-point format for force and other re-
sults, the adder tree is simple and small. Note that we
can obtain exactly the same result on machines with
different number of GRAPE-6 chips, since fixed-point
addition is free of rounding errors.

Figure 5 shows the processor module, which inte-
grates 4 GRAPE-6 chips, 8 memory chips and the first
stage of the adder tree. Figure 6 shows the processor
board, on which 8 modules are mounted.

3.2 GRAPE-6 system architecture

The entire GRAPE-6 system consists of 64 processor
boards. In the present configuration, 64 boards are di-
vided into 4 clusters, each with 16 processor boards and
4 host computers. Within a single cluster, the proces-

Figure 6: Processor board.

Figure 7: Network board.

sor boards are connected to host computers through a
rather complex multicast network. The network board
(figure 7) implements the multicast network (figure 8).
The multicast network is used to reduce the communi-
cation between host computers when parallel calcula-
tion code is used.

In a simple parallel configuration, each processor
has its own share of the particles, and calculates the
force on them. However, with direct summation, each
processor still need the data of particles in other pro-
cessors, to calculate the forces from them. This means
that the communication bandwidth of the single host
limits the overall parallel performance.

In order to avoid this problem, we added special net-
work between hosts and GRAPE-6 processor boards.
In the normal operation mode, each host controls 4
processor boards. However, in the parallel operation
mode, 4 processor boards, which are normally con-
trolled by one host, can receive data from different
hosts. By this way, even though each host has only
the data of its share, the 4 processor board combined
have the data for the entire system, and can calculate
the force from entire system.

It is possible to scale up the network to an 8-host,
64-board system, but we chose to have 4 clusters with

HOST

J
)
ﬂ

HOST

i
(UM
i

HOST

d

HOST Ces)
Ne

%

Figure 9: The full GRAPE-6 System.

host computers connected through Gigabit Ethernet.
This implies some loss of the performance when we use
all 64 boards for single calculation, but allows us more
flexible division of the system.

The current GRAPE-6 system consists of 2048
GRAPE-6 chips, for the peak speed of 64 Tflops.

4 Performance

Here, we present the performance of 4 x 4 single
cluster GRAPE-6 for simple individual timestep code
and treecode. The host computer is a 1.7 GHz Intel
P4 box with i850 chipset, under Linux Kernel version
2.2.17. All timings are done with g++/gcc compilers
version egcs-2.91.66.

Figure 10: The GRAPE-6 System.

10 T T T T T T T T

4x4

Tflops

2x4

1x4

" 1 " 1 " 1 " 1 "
0 2x10° 4x10° 6x10° B8x10° 10°
N

Figure 11: Calculation speed for individual timestep
algorithm

Figure 11 shows the speed of the individual timestep
algorithm in terms of Tflops, as functions of the num-
ber of particles for clusters of different sizes. We used
the Plummer model in the standard unit as the initial
condition. The softening is 1/64 for all calculations.
One can clearly see that the performance scales quite
well with the number of hosts and GRAPE boards.

With the network architecture discussed in the pre-
vious section, the host computers need not exchange
any particle data between them. However, still they
need to synchronize at the beginning of the each block-
step, and they also need to compare the global mini-
mum time and the local minimum time, to decide if
it can perform time integration of particles in its cur-
rent block. At present, the hosts communicate with
MPICH/p4 software with TCP/IP on 100M bit fast
ethernet. The startup overhead of the communication
is visible for very small values of N. Of course, for sys-
tems with small core, the average number of particles
that share the same time becomes small, and commu-
nication overhead becomes somewhat larger.

R R
al0 _
® E
X3
a 7
O 1k S 4
0.1 el el

10* 108 108

N

Figure 12: Calculation speed for treecode

Figure 12 shows the performance of treecode. This
treecode is a newly written version based on orthogonal
recursive multi-section, a generalization of widely used
ORB tree which allows a division to arbitrary number
of domains in one dimension, instead of allowing only
bisection. In this particular timing result, however, the
result is the same as that for ORB.

The distribution of the particles is again the Plum-
mer model. One can see that the scaling is again pretty
good. 4 processor calculation is 1.9x times faster than 2
processor calculation. We can see that the 100 Mb eth-
ernet is fast enough for the treecode accelerated with
GRAPE. Clearly, the performance bottleneck is the
speed of the host computer. Over the time GRAPE-6
will be used, we expect the speed of the host computer
to be improved by a large factor, which almost directly
will be reflected to the speed of the treecode.

5 Summary

We overviewed the GRAPE project, highlighting
the newest machine, the GRAPE-6, which achieved the
theoretical peak speed of 64 Tflops. We described the
network architecture and parallel algorithms used on
GRAPE-6, and reported the achieved performance.

Acknowledgments

I would like to thank all of those who involved in
the GRAPE project. This work is supported by the
Research for the Future Program of Japan Society for
the Promotion of Science (JSPS-RFTF97P01102).

References

[1]

[2]

[3]

[4]

[6]

Aarseth S. J., “Dynamical evolution of clus-
ters of galaxies, 1.”, Monthly Notices of
Royal Astronomical Societyl26, 1963, pp.
223-255.

Aarseth S. J., “Star Cluster Simulations:
the State of the Art”, Celestial Mechanics
and Dynamical Astronomy, 73, 1999, pp.
127-137.

Barnes J. and Hut P., “A hierarchical
O(NlogN) force calculation algorithm”,
Nature, 324, 1986, pp. 446-449.

Greengard L. and Rokhlin V., “A fast algo-
rithm for particle simulations”, Journal of
Computational Physics, 73, 1987, pp. 325—
348.

Makino J. and Aarseth S. J., “On a Hermite
integrator with Ahmad-Cohen scheme for
gravitational many-body problems”, Pub-
lications of the Astronomical Society of
Japan , 44, 1992, pp. 141-151.

Makino J. and Taiji M. Scientific Simu-
lations with Special-Purpose Computers —
The GRAPFE Systems. Chichester:John Wi-
ley and Sons, 1998.

Makino J., Taiji M., Ebisuzaki T., and Sug-
imoto D., “GRAPE-4: A massively paral-
lel special-purpose computer for collisional
N-body simulations”, The Astrophysical
Journal , 480, 1997, pp. 432-446.

Sugimoto D., Chikada Y., Makino J., Tto
T., Ebisuzaki T., and Umemura M., “A
special-purpose computer for gravitational
many-body problems”, Nature, 345, 1990,
pp- 33-35.

