
GRAPE-DR: 2-Pflops massively-parallel computer with
512-core, 512-Gflops processor chips for scientific

computing

Junichiro Makino
Center for Computational

Astrophysics, National
Astronomical Observatory of

Japan, 2-21-1 Ohsawa,
Mitaka, Tokyo 181-8588,

Japan
makino@cfca.jp

Kei Hiraki
Department of Computer

Science, Graduate School of
Information Science and

Technology, The University of
Tokyo, Tokyo 133-0033, Japan
hiraki@is.s.u-tokyo.ac.jp

Mary Inaba
Department of Computer

Science, Graduate School of
Information Science and

Technology, The University of
Tokyo, Tokyo 133-0033, Japan
mary@is.s.u-tokyo.ac.jp

ABSTRACT
We describe the GRAPE-DR (Greatly Reduced Array of
Processor Elements with Data Reduction) system, which
will consist of 4096 processor chips each with 512 cores oper-
ating at the clock frequency of 500 MHz. The peak speed of
a processor chip is 512Gflops (single precision) or 256 Gflops
(double precision).

The GRAPE-DR chip works as an attached processor
to standard PCs. Currently, a PCI-X board with single
GRAPE-DR chip is in operation. We are developing a 4-
chip board with PCI-Express interface, which will have the
peak performance of 1 Tflops. The final system will be a
cluster of 512 PCs each with two GRAPE-DR boards. We
plan to complete the final system by early 2009.

The application area of GRAPE-DR covers particle-based
simulations such as astrophysical many-body simulations
and molecular-dynamics simulations, quantum chemistry
calculations, various applications which requires dense ma-
trix operations, and many other compute-intensive applica-
tions.

1. INTRODUCTION
SIMD parallel processing is a very old idea, with

several successful implementations such as Illiac-IV[2],
ICL/AMT DAP, Goodyear MPP[8], TMC CM-1/2[6], and
INFN/Quadrics APE-100, APEmille and apeNEXT. These
are large machines made of up to 64K processors, each with
its own local memory. Except for the APE machines which
were designed for LQCD calculation, all of these machines
were built before 1990.

There is another form of the SIMD architecture. Almost
all recent microprocessors have some form of SIMD process-

(c) 2007 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by a contractor or affiliate of
the Japanese Government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
SC07November 10-16, 2007, Reno, Nevada, USA
Copyright 2007 ACM 978-1-59593-764-3/07/0011 ...$5.00.

ing units, with 4 or more arithmetic units. These include
VIS of SPARC, Altivec of PowerPC, MVI of Alpha, 3DNow!
of AMD and MMX and SSEx of Intel x86.

Though both of these two architectures are called“SIMD”,
the actual hardware implementation and programming mod-
els are completely different. In the former case of large-scale
SIMD parallel machines, each processing element has its own
memory and the address generation unit for it, and they are
connected through some routing network. In the latter case,
the instruction set of a single processor is extended to han-
dle a single long word as a vector of multiple short words.
Thus, essentially only the arithmetic units are duplicated,
and they are connected to single memory unit (or single L1
cache) through a single datapath.

The former architecture is for large machines made of a
number of processing chips, each with one or a few proces-
sors. The latter is for a single processor chip. With present-
day technology we could in principle integrate thousands or
more of processors used in machines like CM-1 into a sin-
gle chip, and yet SIMD extensions currently use just a few
arithmetic units.

We have completed the development of a large-scale SIMD
processor chip, which we call GRAPE-DR (Greatly Reduced
Array of Processor Elements with Data Reduction). A single
GRAPE-DR chip, fabricated with TSMC 90nm process, in-
tegrates 512 processors, each with double-precision floating-
point arithmetic units. It operates with 500MHz clock fre-
quency and the peak performance of a single chip is 512
Gflops (single precision) or 256 Gflops (double precision).
We are currently building a large parallel machine with these
GRAPE-DR chips. The final machine will be completed by
early 2009, and its peak performance will be 2 Pflops (single
precision) or 1 Pflops (double precision).

In this paper, we describe the idea behind the GRAPE-
DR processor, its detailed architecture, the programming
model, measured performance on a few applications, appli-
cation areas, and future plans.

In section 2, we discuss the limitation of past and present
SIMD architectures and in sections 3 and 4 we describe how
GRAPE-DR architecture solved the problems. In section
5 we describe the details of the GRAPE-DR chip and in
section 6 current status of hardware development. Finally,
in section 7 we compare the GRAPE-DR architecture with

PE PE PE PE PE

instruction, data

LM LM LM LM LM

communicaton network

Figure 1: Structure of a traditional large-scale
SIMD processor

those of several other “many-core” processors.

2. LIMITATIONS OF LARGE-SCALE
SIMD MACHINES

As we described in the previous section, large-scale SIMD
machines have become extinct in early 1990s. One can think
of many reasons, but one crucial one, in our opinion, is sim-
ply that with traditional SIMD architecture it has become
impossible to make effective use of the advance of the semi-
conductor technology.

Figure 1 shows the basic architecture of an SIMD pro-
cessor. A number of processor elements (PEs), each with
its local memory (LM), execute the same instruction. They
can communicate with each other through some communica-
tion network. Many machines had simple mesh connections.
Some machines had more complex networks such as the hy-
percube.

The main advantage of an SIMD machine compared to
an MIMD machine is that many processors can share single
control logic for instruction fetch, decode etc. Thus, one can
make larger number of processors from the same amount of
transistors or silicon real estate, and until late 1980s one
could make large-scale SIMD machines with number of pro-
cessors much larger than that of MIMD machines for similar
production cost.

However, such an advantage was lost in early 1990s, when
a single LSI became large enough to integrate complex mi-
croprocessors with fully pipelined floating-point arithmetic
units. At that point, the bandwidth that floating-point
arithmetic units required became much more than that of
the external memory, and even for a single arithmetic unit
a cache memory (or a complex hierarchy of caches) became
necessary. If even a single arithmetic unit requires a cache,
it is clear that increasing the number of arithmetic units
does not improve the overall performance. In other words,
memory bandwidth limits the performance of an SIMD pro-
cessor chip. Moreover, the SIMD architecture implies that
the instruction stream must be supplied from an external
control unit and broadcasted to the entire machine, which is
even more difficult than offering the bandwidth to the local
memory. So the instruction bandwidth is also a problem.

To summarize, it has become impossible to design a large
scale SIMD machine, with reasonably high clock frequency
and reasonably large number of processor elements inte-
grated into a chip. This is the basic reason why large-scale
SIMD machines have become extinct.

The current SIMD extensions of microprocessors solved

the latter problem of the instruction bandwidth by limit-
ing the range of arithmetic units which works in the SIMD
fashion to a single processor core in a single chip, but did
not really solved the memory bandwidth problem. In cur-
rent SIMD extensions, SIMD execution units access the data
in the L1 cache through multi-word load/store instructions.
Thus, as far as the data is in the L1 cache, high performance
can be achieved. However, if the data is not in the L1 cache,
the performance is limited by the bandwidth of the memory
(or L2 or higher level cache), which is much less than that
of the L1 cache. Current microprocessors thus have only a
modest number of floating point units, even for the case of
multi-core chips.

However, the requirement for memory bandwidth depends
critically on the type of applications, and there are a num-
ber of important applications which require rather small
memory bandwidth. One example is particle-based simu-
lations. In particle-based simulations, one particle interact
with many other particles at each timestep. Thus, calcu-
lation cost per particle is fairly large, while the amount of
data for one particle is tiny. The extreme example is as-
trophysical many body simulations with the O(N2) direct
interaction calculation algorithm, where N is the number of
particles. With the direct interaction calculation, the grav-
itational force on one particle is calculated as the sum of
all N − 1 forces from other particles. Therefore, we can use
various blocking techniques to reduce the requirement for
memory bandwidth. In the case of astrophysical many-body
simulations with O(N log N) or O(N) methods, calculation
cost is much smaller, but we can still use blocking tech-
niques. The same is true for classical molecular dynamics
simulations.

Another example is quantum chemistry calculations,
where the calculation of two-electron integrals and the di-
agonalization of dense matrices are among the most costly
operations. Both are compute-intensive operations on small
amount of data. In general, most operations on dense ma-
trices can be rewritten in such a way that the matrix-matrix
multiplications become the most time-consuming part, and
it is easy to reduce the memory bandwidth requirement of
matrix-matrix multiplications by blocking.

It is probably more useful to list applications which re-
quire very high memory bandwidth and thus not suitable
for our SIMD architecture. One is large scale hydrodynam-
ics simulations (CFD) on structured grid and relatively sim-
ple low-order explicit integration schemes. Another exam-
ple is applications which requires FFT of very large dataset,
such as CFD with spectrum methos or plane-wave expan-
sion methods for band-structure calculations. In both cases,
the number of arithmetic operations per memory access is
intrinsically small.

For many other applications, we can reduce the memory
bandwidth requirement by various techniques, and we might
be able to use an SIMD processor with large number of float-
ing point units and small memory bandwidth effectively. In
the next section, we describe the architecture of such an
SIMD processor chip we developed.

3. GREATLY REDUCED ARRAY OF PRO-
CESSOR ELEMENTS

Figure 2 shows the basic architecture we discuss in this
paper. It consists of a number of processing elements (PEs),

PE PE PE PE PE

instruction, input data

output data

Register File

ALU/FPU

Data In

Data Out

Instructon

Figure 2: Basic structure of an SIMD processor

each of which consists of an FPU and a register file. They
all receive the same instruction from outside the chip, and
perform the same operation.

Compared to the classic SIMD architecture such as that
of TMC CM-2, the main difference are the followings.

a) PEs do not have large local memories.

b) There is no communication network between PEs.

We introduce these two simplifications so that a large
number of PEs can be integrated into a single chip. If we
want to have a large memory connected to each PE, the only
economical way is to attach DRAM chips. However, once
we decide to use external memory chips, it becomes very
difficult to integrate large number of processors into a chip.
Consider an example of a chip with 100 processors, each
with one arithmetic unit. If the clock frequency is 1 GHz,
the peak speed of the chip is 100 Gflops. If we want to add
the memory units which can supply one word per clock cycle
to these 100 processors, we need the memory bandwidth of
800 GB/s, or around 100 times more than that of the latest
microprocessors, which is clearly not practical. If we elimi-
nate the local memory of processors, we can integrate very
large number of processors into a chip.

A communication network is not very expensive, as far as
it is limited into a single chip. A two-dimensional mesh net-
work would be quite natural, for physically two-dimensional
array of PEs on a single silicon chip. However, such a two-
dimensional network poses a very hard problem, if we try
to extend it to multi-chip systems. (see figure 3) With cur-
rent and near-future VLSI technology, it is possible to inte-
grate more than 1000 PEs to a single chip, each with fully
pipelined FPUs. Thus, a 2D array will have the dimensions
of 32 by 32, and the minimum number of external links nec-
essary to construct a 2D network is 32 × 4 = 128. If we
want to have, say, 16 wires per link, the total number of
pins necessary is 2,048. To make such a large number of
pins work with a reasonable data rate is not impossible, but
very costly.

If we eliminate the inter-PE communication network right
from the beginning, we have no problem in constructing
multi-chip systems, since PEs in different chips need not
be connected.

2D on-chip network

2D netowork of chips/boards

Figure 3: On-chip two-dimensional network (left)
and its extension to multiple chips and multiple
boards (right)

Thus, this simple architecture has two advantages. First,
we can integrate a very large number of PEs into a single
chip. Second, it is easy to construct a system with multiple
chips. As a result, we can construct a system with very high
peak performance.

Important question here is if any real application can ac-
tually take advantage of this architecture. We consider sev-
eral examples and extend the basic architecture in the next
section.

Note that this SIMD processor works as an attached pro-
cessor to general-purpose CPU. Since the on-chip memory
is limited to just the register files of PEs, the SIMD pro-
cessor itself cannot run any application which requires large
amount of memory. Thus, we need to move only the part
of the application program which can be efficiently done on
the SIMD processor. This of course means there will be
communication overhead.

Before we proceed to the next section, we need a name
for the proposed architecture. Since the main difference be-
tween the proposed architecture and previous SIMD archi-
tecture is the removal of elements like local memory and
inter-PE network, we call this architecture Greatly Reduced
Array of Processor Elements, or GRAPE. The similarity of
this name to the GRAPE for astronomical N -body simula-
tions[9] is a pure coincidence.

4. MODIFICATION TO THE BASIC AR-
CHITECTURE

4.1 Particle-based simulations
In many particle-based simulations such as classical

molecular dynamics or astrophysical N -body simulations,
the most expensive part of calculation is the evaluation of
particle-particle interactions. In general, it has the form

fi =
X

j 6=i

g(xi, xj), (1)

where xi denotes the variables associated with particle i,
g(xi, xj) is some generalized “force” from particle j to par-
ticle i, and fi is the total “force” on particle i. At least
formally, the summation is taken over all particles in the sys-
tem. Therefore the calculation cost is O(N2), where N is the
total number of particles in the system. In some cases the
interaction is of short-range nature and we can apply some
cut-off length. If the interaction is long-ranged, we might
be able to use approximate algorithms such as FMM[4] or

R
ed

uc
tio

n
tr

ee

results

......................

Buffer MemoryPE PE PE

Buffer MemoryPE PE PE

Buffer MemoryPE PE PE

Buffer MemoryPE PE PE

input
data

instruction broadcast

Figure 4: Modified SIMD architecture

Barnes-Hut tree[1].
In these cases, however, the most expensive part is still

the evaluation of equation (1). The basic SIMD structure
we discussed in the previous section is quite suited to cal-
culations of this type. In the simplest case, we first load
data of particles on which we calculate the interaction to
the registers of PEs. In other words, we first write one xi to
each PE. Then we broadcast one xj to all PEs and let them
calculate the force from this particle j to their particles. We
repeat sending particles xj until all particles are sent, and
then read the calculated results fi in PEs. Remaining cal-
culations such as the time integration of particles are done
on the host computer which controls the SIMD processor.

If the number of particles is much smaller than the num-
ber of PEs, the efficiency would become low. Even when the
total number of the particles is large, if the interaction is
short-ranged, the number of particles with which one parti-
cle physically interact can be much smaller than the number
of PEs.

This problem can be solved in many different ways. One
possibility is to organize the processors into blocks, as shown
in figure 4.

In this modified architecture, PEs are organized into
blocks, each with small buffer memory. These blocks are
connected to a reduction network. The host computer can
either write data to individual buffer memories or broadcast
the same data to all buffer memories. In this way, PEs in
different blocks can calculate the forces from different parti-
cles. In addition, the reduction network allows multiple PEs
in different blocks to calculate the force on the same parti-
cle from different particles. Thus, the efficiency for small-N
systems or short-range force is greatly improved. In the fol-
lowing, we call these blocks of PE as broadcast blocks (BBs)
and the buffer memory as broadcast memory (BM).

Note that the hardware cost of the buffer memory and
reduction network is very small, since their cost is propor-
tional to the number of blocks, which is a small fraction of
the number of PEs.

4.2 Dense Matrix operations
For any dense-matrix algorithms, the basic operation is

matrix multiplication C = AB. Thus, the key question is
if our proposed architecture can achieve reasonable perfor-
mance for matrix multiplication.

We consider the modified architecture discussed in the
previous section. In this architecture, it is easy to implement
parallel matrix multiplication. In the following, we assume
that the number of PEs in a group and the number of groups

in a chip is both n. Thus, a chip has n2 PEs. The basic idea
is to block-subdivide the matrix A into n × n sub-matrices
in the same way as in the standard Canon’s algorithm and
load them to each PE. Then we take one column of B and
divide it to n pieces, and send these pieces to the broadcast
memories. We then calculate c = Ab on each PE on each
block. By taking summation over blocks, we obtain one row
of C.

To be more specific, let us assume that A is a square
matrix of size nm. We subdivide A into submatrices Aij of
size m, where m should be small enough that m2 words can
fit to the local memory of each PE. Here, Aij is stored to PE
i of BB j. We consider the multiplication of single column of
B, which is a vector b with length mn. The vector b is again
divided into n pieces, and for each j, bj is broadcasted to all
PEs of BB j. Then, PE i of BB j performs the multiplication
Aijbj . The results are partial sum of ci, for each of PE i of
all BBs. Thus, by taking the summation of these partial ci

sums over all BBs, actual sum ci is calculated. Summation
is done by the reduction network.

4.3 Two-electron integral
The evaluation of two-electron integrals is simply a rather

long calculation from small number of input data, resulting
in essentially a single number, and a very large number of
them can be calculated in parallel. Thus, original simple
architecture without reduction network is enough. Since the
modified architecture can be used to emulate the original
one, the modified architecture can be used.

4.4 Greatly Reduced Array of Processor Ele-
ments with Data Reduction

We have changed the basic SIMD architecture by mak-
ing the blocks of PEs and adding the buffer memories and
the reduction network. Therefore, we call this architecture
GRAPE-DR, or Greatly Reduced Array of Processor Ele-
ments with Data Reduction.

5. DESIGN OF THE GRAPE-DR CHIP
In this section, we overview the design of the first chip

based on the GRAPE-DR architecture, the GRAPE-DR
chip. It integrates 512 simple processing elements (PEs),
organized into 16 broadcast blocks. Each PE can do one
floating-point addition and one multiplication in single pre-
cision per clock cycle, or one addition and one multiplication
in double precision in every two clock cycles. The clock fre-
quency is 500MHz and the theoretical peak performance is
512Gflops in single precision and 256 Gflops in double pre-
cision.

5.1 PE architecture
Since each PE is programmable, we have to define its in-

struction set architecture, in other words, how we write pro-
grams for PEs. We designed the PE architecture so that the
hardware is simple and yet can achieve high performance.

From the hardware point of view, PE must be fully
pipelined, with fixed number of stages which does not de-
pend on the data. This requirement of fixed number of
stages comes from the SIMD nature that all PEs must pro-
ceed in lockstep. For simplicity, we construct PEs so that all
operations, integer or floating-point, have the same number
of stages.

With this pipeline processor of fixed stages, the result
of one operation becomes available after a fixed number of
stages, independent of the types of the operations executed.
A simple way to take advantage of this predictability is to
define a vector instruction set, with the vector length same
as the number of pipeline stages. In this way, each vector in-
struction can use the result of the previous instruction, and
we can eliminate the need for the instruction scheduling.
Additional advantage of the vector-mode instruction is that
the communication bandwidth for the instruction stream is
reduced by the factor same as the vector length. In our first
implementation, we use the vector length of four.

When we use this vector instruction set for the calcula-
tion of particle-particle interaction, the simplest way to write
the program is to use one PE to calculate the forces on four
particles (here four is the vector length). This means the ef-
fective number of PEs, from software point of view, becomes
larger by a factor of four, and we probably want to make the
number of blocks introduced in the previous section larger
by the same factor, to keep the effective number of parti-
cles to be processed in parallel small. Note that this can be
achieved without increasing the communication bandwidth,
since the communication bandwidth depends only on the
total processing speed and the number of i-particles.

The use of the vector instruction set also implies the size
of the register file must be large enough in order to keep
all intermediate data. However, for many applications the
requirement is anyway small. Therefore the impact of the
vector mode on the size of the register file is rather small.

The fact that we adopted the vector mode instruction
and reduced the bandwidth requirement for the instruction
stream means that we need not be too clever in reducing the
length of the instruction word. So we adopted the horizon-
tal microcode itself as the instruction word. An instruction
word consists of all the necessary control bits for all com-
ponents, and these control bits are directly supplied to the
hardware, after adequate numbers of delay stages.

Figure 5 shows the architecture of a PE of the GRAPE-
DR chip. A PE consists of a floating-point adder, a floating-
point multiplier, an integer ALU, a three-port general-
purpose register file (GP reg), a single-port local memory,
and an additional dual-port working register (T register).
The T register is used store temporary values. The local
memory augments the size of the register file. The address
generator for the local memory supports the indirect ad-
dressing, by arrowing the content of the T register to be
used as the address of the local memory. It also supports
constant-stride access during vector operations. Storing of
the results to memory units (GP reg and local memory) can
be controlled by mask registers. Mask registers can store
the flag output of the integer ALU and the floating-point
adder.

Each PE has two fixed inputs, PEID and BBID. PEID
gives the index of PE within its broadcast block, while BBID
gives the index of the broadcast block itself. Using these
fixed-number inputs and mask registers, we can control in-
dividual PEs independently.

The broadcast memory is dual-ported. With the current
GRAPE-DR design, the data in the broadcast memory can
be written directly to all of GP register, T register and the
local memory, while only the data in the GP register can be
transferred to to the broadcast memory.

The basic data format is a 72-bit floating-point format,

GP Reg
 32W

Local Mem
 256W

T Reg

+

x

M
ultiplexor

M
ultiplexor

INT
ALU

SHMEM
Port

SHMEM
Port

A

B

Mask(M)Reg

PEID
BBID

Figure 5: Structure of a Processor Element

with 1-bit sign, 11-bit exponent and 60-bit mantissa. We
call this format double-precision. It also supports single-
precision format with 24-bit mantissa. The integer ALU
operates on 72-bit integers. The floating-point adder unit
also work in 72-bit double-precision data, but it has the flag
to round the output to single-precision format. Also, it has
the flag to handle unnormalized numbers, for both the input
and output.

The implementation of the floating-point multiplier is a
bit complex. The multiplier is designed to handle input of
up to 50-bit mantissa (not 60 bits). The reason is that for
many applications accuracy of addition/subtraction is more
critical than that of multiplication. Therefore we used 60-
bit mantissa for addition/subtraction and 50-bit mantissa
for multiplication.

The actual multiplier array has one 50-bit port (port A)
and one 25-bit port (port B), and generate 75-bit output.
This 75-bit result is then rounded to either 60-bit or 24-bit
format. Thus, multiplication of two single-precision words
can be done with throughput of one result per cycle. For
double-precision multiplication, we first perform the multi-
plication between port-A input and upper 25 bits of port-B
input, and then perform the multiplication between port-
A output and lower 25 bits of port-B input, and then add
then using the floating-point adder unit. Thus, while the
double-precision multiplication is performed, floating-point
adder unit is occupied for half of the time.

The integer ALU can perform most of basic integer arith-
metic and logical operations, including shift operations.

5.2 Chip architecture
Figure 6 shows the overall architecture. We so far showed

PEs as forming a two-dimensional grid, but from hardware
point of view it is more appropriate to regard the structure
as a two-level hierarchy. The chip consists of multiple broad-
cast blocks (BBs) of PEs. Each block consists of PEs and
a broadcast memory (BM). All BBs receive the same data
and instruction from outside the chip. The outputs of BBs
are reduced by the reduction network.

All communication to and from PEs are through BMs. To
write a data to one PE, first we write that data to the BM,
and then transfer it to PE’s memory (or registers). To read
out the data in a PE, first we let that PE to transfer the
data to BM, and then use the reduction network to output

B
roadcast M

em
ory

Broadcast
same data to
all PEs

Control Processor

Memory Write Packet
Instruction

 Block 0

Result output port

External MemoryHost Computer

GRAPE-DR chip

Result

Result Reduction and Output
Network

any processor
can write (one
at a time

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

Figure 6: Overall Architecture of the GRAPE-DR
chip

the data.
The reduction network has the binary tree structure, and

each tree node has the floating-point adder and integer ALU
of the same design as those of PEs. Thus, we can apply many
different reduction operations, such as summation, multipli-
cation, max, min, and, or etc.

5.3 Programming GRAPE-DR
In the case where we use this new GRAPE-DR processor

as the replacement of traditional special-purpose GRAPE
chip for particle-particle interaction calculation, program-
ming is not a very large issue. We can simply write down
the microcode for the gravitational force calculation, and
communication library routines etc. This is not much dif-
ferent from the softwares necessary for traditional GRAPE
hardwares. The only difference is that we also need to write
the microcode, which is just several tens of lines.

For other kind of particle-particle interactions, the devel-
opment process is quite similar to that for gravitational force
calculation, and much of the communication library codes
can be recycled. Thus, it would be more efficient to let some
software generate the communication library from higher-
level specifications, in the way similar to the PGPG system
[5]. Also, writing the horizontal microcode by hand is hard,
even for just a few lines. We have developed a simple sym-
bolic assembly language, in which the program is written in
a more or less human-readable way. Compiler languages are
also under development [7].

Complete examples of the assembly language code and
compiler language code is given in Appendix.

5.4 Implementation details of the GRAPE-
DR chip

In this section, we summarize the characteristics of the
first hardware based on the GRAPE-DR architecture, the
GRAPE-DR chip. The GRAPE-DR chip was fabricated
using 90 nm process and integrates 512 processors. The
general-purpose register has 32 words and local memory 256

words.
One BB consists of 32 PEs and a 1024-word dual-port BM.

One chip consists of 16 blocks, and the input port of the chip
can accept one double-precision word per clock cycle. The
throughput of the output port is one word per every two
clock cycles.

The chip operates on the clock cycle of 500 MHz and offers
the peak speed of 512 Gflops for single-precision operations
and 256 Gflops for double-precision operations. Input data
bandwidth is 4 GB/s and output 2 GB/s.

5.5 Parallel GRAPE-DR system
So far, we have discussed the design of a single chip. In

practice, in order to achieve a reasonable performance, it is
necessary to use many of these chips for one application. In
other words, we need to discuss how to construct a large
parallel system.

Here, we continue the approach we used for previous
GRAPE hardwares[3]. The GRAPE-DR hardware will
be designed as a relatively small attached processor for
UNIX/Linux running workstations or PCs, and large paral-
lel systems will be constructed just by assembling large PC
clusters in which each node is connected to small GRAPE-
DR hardware. This approach has many practical advan-
tages. Most important one is that we can keep the speed
ratio between the PC host computer and GRAPE-DR rela-
tively small (around a factor of 1000 or less), which greatly
simplifies the requirement for the application software. Par-
allelization is handled on the side of the host computer and
GRAPE-DR would not have any special hardware/software
to support parallelization.

One GRAPE-DR card will house 4 processor chips, each
with its own off-chip memory. The data transfer speed be-
tween the host and GRAPE-DR card can be the bottleneck,
but current fast interface standards like 8-lane PCI-Express
would offer reasonable bandwidth, at least for the current
GRAPE-DR chip.

We plan to complete a 4096-chip system by early 2009.
It will have the theoretical peak performance of 2 Pflops
for single precision and 1 Pflops for double precision. Most
likely, it will be a 512-node system each with two GRAPE-
DR cards.

6. DEVELOPMENT STATUS

6.1 Hardware
We finished the physical design of the GRAPE-DR chip

by the end of 2005, and received the first sample chips in
May 2006. Top panel of figure 7 shows the top-level layout
image of the chip. Each white square is one PE. The die size
is 18mm by 18mm.

We have developed the GRAPE-DR test board (see the
bottom photo of figure 7), which houses one GRAPE-DR
chip around the same time and confirmed the operation of
the chip with both the test vectors and for real applications.
The test board consists of one GRAPE-DR chip, one FPGA
chip (Altera Stratix II), and one memory chip. The interface
to the host is PCI-X, and we used the IP core from PLDA.
Figure 8 shows the block diagram of the GRAPE-DR test
board.

We have finished the development of the second board
with PCI-Express interface and large on-board memory with
DDR2 DRAM.

Figure 7: GRAPE-DR chip layout (top) and
GRAPE-DR test board (bottom)

PCI-X

FPGA
QDR
SRAM GRAPE-DR

 CHIP

DIN

DOUT
INS

address

data

data

Figure 8: GRAPE-DR chip test board block dia-
gram.

Table 1: Applications tested on the hardware
application assembly asymptotic measured

code steps speed speed
simple gravity 56 174 Gflops 50 Gflops
gravity and 95 162 Gflops —
time derivative
vDW force 102 100 Gflops —

The measured maximum power consumption of the
GRAPE-DR chip was 65W.

6.2 Software
So far, we have implemented the following applications

• Gravitational N -body calculation (simple one and that
for Hermite integration scheme)

• Molecular dynamics calculation with van der Waals
potential

• Parallel integration of three-body problems

• Matrix multiplications

• Simplified two-electron integral calculation

The first two have been actually run on the hardware.
Table 1 lists the number of instructions in the loop body,
estimated asymptotic performance of the single-chip board
when we ignore the communication between the host and
the board, and actual measured performance of the board
(only for one gravity code).

For gravitational force calculation, around 50Gflops was
measured for integration of 1024-body system. Currently,
we use the on-chip memory of FPGA as the on-board mem-
ory, which limits the size of the memory. For larger num-
ber of particles, the performance close to the peak could be
achieved, even with current relatively slow PCI-X interface.
Since the purpose of this test board is to test the chip itself,
we have not tried much to achieve very high performance.
For the same reason, we do not give the measured perfor-
mance for two other codes.

Other applications have been tested on software chip sim-
ulator. We plan to run these applications after a second
board with large on-chip memory becomes available, since
they do require large memory for either data (matrix multi-
plication) or code (others).

7. DISCUSSION

7.1 Comparison with previous SIMD ma-
chines

Since all PEs on GRAPE-DR execute the same instruc-
tion stream, it belongs to the SIMD architecture. There
have been a number of projects to develop large-scale paral-
lel computers for scientific computing based on SIMD archi-
tecture. Examples are Illiac IV, Goodyear MPP, ICL DAP,
TMC CM-2, Maspar MP-1, IFN/Quadrics APE machines.

There are, however, several important differences between
the design of GRAPE-DR and that of previous SIMD ma-
chines. The first one is the size of the local memory for PEs.
All previous SIMD machines are designed so that the main

body of the application program runs on the SIMD proces-
sor array. Therefore the combined capacity of the memories
local to PEs must be large enough to run actual applica-
tions. However, this requirement for large local memory
makes the efficient design of an SIMD processor array prac-
tically impossible with the current VLSI technology, as we
discussed in section 2. Except for APE machines, SIMD
machines listed above were designed and built before 1990,
which was the time when it become possible to integrate
multiple floating-point units into a single chip.

In the case of GRAPE-DR, we solved this problem of
the local memory bandwidth by limiting the size of the
local memory so that it can be integrated into one chip.
This means that the way the application program use the
GRAPE-DR hardware is different from that for previous
SIMD processors. Main body of the data resides on the
main memory of the host computer, and only some relatively
small chunks of data are exchanged between the host and
GRAPE-DR. This also means quite different requirement
for the software. In the case of previous SIMD machines,
the entire application code must be run on the SIMD pro-
cessor array. Thus, either the users or the compilers must
generate the program which runs on a particular SIMD ar-
chitecture.

In the case of GRAPE-DR, however, we move only
the most compute-intensive part of a given application to
GRAPE-DR, and all remaining part of the application code
still runs on the host computer. Thus, we do not need to de-
velop a good compiler or rewrite the entire application code
by hand.

Another difference is that the architecture of GRAPE-
DR is not strictly SIMD, since multiple GRAPE-DR boards
connected to different host computers can run different pro-
grams. Thus, even though the chip-level architecture is
SIMD, the system-level architecture is distributed-memory
MIMD. Thus, we can use parallel programs developed for
PC clusters, by replacing the most compute-intensive part
to the calls to library routines implemented on GRAPE-DR.

The design of ClearSpeed CX600 is quite similar to
GRAPE-DR. It consists of 96 PEs, each with integer ALU,
FMUL, FADD, integer MAC, 5-port register file and 6KB of
memory. All PEs receive the same instruction from a scalar
processor integrated into the chip. Compared to GRAPE-
DR, the main difference is the lack of the support for the
hierarchical structure (broadcast memory and reduction net-
work). Since the number of PEs in the CX chip is still rela-
tively small, the reduction network might not be crucial for
the application performance. The CX600 chip has the die
size of 15mm by 15mm and fabricated using IBM Cu-11 130
nm process. Its peak speed for matrix multiplication is 25
Gflops. With the first implementation of the GRAPE-DR
architecture, we achieved 256 Gflops double-precision speed
for matrix multiplication with 512 PEs using 90nm process.

Recent GPUs with the so-called ”Unified Shader” archi-
tecture, in particular nVidia GeForce 8800, can be used as
GPGPU (General-Purpose GPU), in the way rather simi-
lar to GRAPE-DR processor chip. The peak performance
numbers of GeForce 8800 and GRAPE-DR chip are rather
similar. The former can perform 128 single-precision multi-
plications and 128 multiply-and-add operations also in single
precision, at the clock speed of 1.35GHz. Thus, the theo-
retical peak performance is 518 Gflops. The peak perfor-
mance of a GRAPE-DR chip is 512 Gflops. The transistor

count of GeForce 8800 is 681M, while that of GRAPE-DR
is 450M. Both are manufactured using TSMC 90nm pro-
cess. From the viewpoint of an application developer, the
largest difference between GPU and GRAPE-DR is the lack
of the external memory with high bandwidth in the case of
GRAPE-DR. This difference of course limit the application
area to some extent, but many applications do not need such
memory.

One important difference is the power consumption.
GeForce 8800 can consume as much as 150W, while the
maximum power consumption of a GRAPE-DR chip is 65W.
This difference comes from the differences in the clock fre-
quency and the die size. In other words, the design of
GRAPE-DR is significantly more efficient than that of a
GPU with unified-shader architecture. This difference in
the efficiency is likely to increase in future generations, since
GPUs will most likely become more flexible, in other words
less efficient in the use of transistors.

7.2 On-chip communication network or off-
chip memory bandwidth

One unusual design decision we made for GRAPE-DR is
the design of the communication network for PEs, or lack of
it. Almost every SIMD design has nearest-neighbor 2-D grid
communication network, and some successful designs had
network of higher dimensions (3D on APE and 14D on CM).
On the other hand, the baseline GRAPE-DR architecture
has only the broadcast/reduction network.

For particle-based simulations or dense-matrix operations,
this lack of inter-PE communication network is no problem.
Previous generations of special-purpose GRAPE systems did
not have inter-PE communication network. Thus, as far as
we use GRAPE-DR as the programmable replacement of old
GRAPE systems, we do not need inter-PE network.

Here we discuss if addition of the inter-PE communication
network would improve the performance of some applica-
tions. We consider FFT and explicit hydro code on regular
grid.

The GRAPE-DR chip can perform multiple FFT oper-
ations of up to around 512 points, with the efficiency of
around 10%. With some on-chip network, we may be able to
use multiple PEs to perform FFT of a long vector. However,
the increase in the performance is rather limited, since even
if we do 1M-points FFT, the computation/communication
ratio becomes only a factor two bigger.

A more straightforward way to improve the efficiency is to
increase the off-chip communication bandwidth. With fast
serial interfaces like XDR, it is not too expensive to connect
the GRAPE-DR chip, its local memory and host processor
with the link speed exceeding 10 GB/s. In this way, it is not
impossible to achieve the efficiency much higher than that
of the current GRAPE-DR chip.

For hydro calculations, on-chip communication network
would be useful, if all variables can fit into the local mem-
ory of the chip. However, in practice that would be unlikely,
and performance would be be limited by the off-chip com-
munication bandwidth. Thus, it seems more practical to
increase the off-chip communication bandwidth.

At least for these two examples, on-chip communication
network does not help, and increasing the off-chip commu-
nication bandwidth is more useful.

Acknowledgments
The authors thank Toshiyuki Fukushige, Yoko Funato, Piet
Hut, Toshikazu Ebisuzaki, and Makoto Taiji for discussions
related to this work. The GRAPE-DR chip design was done
in collaboration with IBM Japan and Alchip company. We
than Ken Namura, Mitsuru Sugimoto, and many others from
these two companies. The design of the control processor
on the prototype board was done by Takeshi Fujino. This
research is partially supported by the Special Coordination
Fund for Promoting Science and Technology (GRAPE-DR
project), Ministry of Education, Culture, Sports, Science
and Technology, Japan.

Appendix: Example of assembly-level pro-
gramming
Currently, the software system for GRAPE-DR is quite sim-
ilar to the PROGRAPE/PGR system, which is designed to
use FPGA as coprocessors. In both cases, the underlining
idea is to use them in the way similar to GRAPE systems.
In other words, they are designed to use the hardware to
evaluate equation (1). The assembly language source has
the following three sections

• Variable declaration section, in which we define the
above xi, xj , fi and other working variables.

• Initialization section, which gives the assembly lan-
guage code for initialization.

• Loop section, which gives the definition of function g.

The following is the complete listing of assembly-language
description for gravitational force calculation

ai = −
X

mj
ri − rj

(|ri − rj |2 + ε2j)
3/2

(2)

1: var vector long xi hlt flt64to72

2: var vector long yi hlt flt64to72

3: var vector long zi hlt flt64to72

4: bvar long xj elt flt64to72

5: bvar long yj elt flt64to72

6: bvar long zj elt flt64to72

7: bvar long vxj xj

8: bvar short mj elt flt64to36

9: bvar short eps2 elt flt64to36

10: var short lmj

11: var short leps2

12: var vector long accx rrn flt72to64 fadd

13: var vector long accy rrn flt72to64 fadd

14: var vector long accz rrn flt72to64 fadd

15: var vector long pot rrn flt72to64 fadd

16: loop initialization

17: vlen 4

18: uxor $t $t $t

19: upassa $ti $ti $lr40v

20: upassa $t $t $lr48v

21: upassa $t $t $lr56v

22: upassa $t $t pot

23: loop body

24: vlen 3

25: bm vxj $lr0v

26: vlen 1

27: bm mj lmj

28: bm eps2 leps2

29: vlen 4

30: nop

31: fsub $lr0 xi $r6v $t

32: fsub $lr2 yi $r10v ; fmul $ti $ti $t

33: fsub $lr4 zi $r14v

34: fmul $r10v $r10v $r18v ; fadd $t leps2 $t

35: fmul $r14v $r14v $r22v

36: fadd $t $r18v $t

37: fadd $ti $r22v $r18v $t

38: ulsr $ti il"60" $t $lr22v

39: ulsr $ti il"1" $t

40: uadd $lr22v $ti $t

41: usub hl"9fd" $ti $t

42: ulsl $ti il"60" $lr30v

43: moi 1

44: uand il"1" $lr22v

45: moi 0

46: uand $r18v h"000ffffff" $t

47: uor $ti h"3ff000000" $t

48: fmul $ti f"0.57" $t

49: fsub f"1.57" $ti $t

50: mi 1

51: fmul f"1.414" $ti $t

52: mi 0

53: nop

54: fmul $t $lr30v $t $r22v

55: fmul $r18v $r18v $r26v $t

56: fmul $r18v $ti $r26v $t

57: fmul $ti f"0.5" $r26v

58: fmul $r22v $r22v $t

59: fmul $ti $r26v $t

60: fsub f"1.5" $ti $t

61: fmul $r22v $ti $t $r22v

62: fmul $ti $ti $t

63: fmul $ti $r26v $t

64: fsub f"1.5" $ti $t

65: fmul $r22v $ti $t $r22v

66: fmul $ti $ti $t

67: fmul $ti $r26v $t

68: fsub f"1.5" $ti $t

69: fmul $r22v $ti $t $r22v

70: fmul $ti $ti $t

71: fmul $ti $r26v $t

72: fsub f"1.5" $ti $t

73: fmul $r22v $ti $t $r22v

74: fmul $ti $ti $t

75: fmul $ti $r26v $t

76: fsub f"1.5" $ti $t

77: fmul $r22v $ti $t

78: fmul lmj $ti $t $r22v

79: fmul $r6v $ti $t ; upassa pot pot $lr0v

80: fadd $lr40v $ti $lr40v accx

81: fmul $r10v $r22v $t

82: fadd $lr48v $ti $lr48v accy

83: fmul $r14v $r22v $t

84: fadd $lr56v $ti $lr56v accz

85: fmul $r18v $r22v $t

86: fadd $lr0v $ti pot

Lines 1-3 defines xi, which is, in this case the three po-
sition variables xi, yi, and zi. The keyword hlt means
that it is for xi. Keywords elt and rrn are for xj data and
fi data. Keywords like flt64to72 specifies the type of for-

mat conversion to be done in the interface hardware. Lines
16 to 22 are initialization. Lines 16 and 17 are assembler
directives.

The vlen directive means the instructions will be per-
formed for four clock cycles. As we described in section 5.1,
the instructions are sent to the chip only once in every four
clock cycles. The vlen directive specifies the actual number
of vector length for the subsequent instructions.

Lines 18 to 22 specifies actual instructions. Instruc-
tions have three-address format, with operation source1

source2 destination syntax, except for the bm instruction
(lines 25, 27 etc) which has operation source destination

format. However, as in the case of line 55, we can specify
multiple destinations when that is useful. Also, immediate
values can be specified as is used in lines 57, 60 etc. The
bm instruction move the data between the broadcast mem-
ory and local memory (or register) of PEs. Here, we do
not give the full description of the instructions, but any op-
eration starting with ”u” is unsigned integer operation, and
fmul and fadd are floating point multiplication and addition.
Operands of the form $[l]rnn[v] such as $lr0v are regis-
ter specification, and $t is the T register (see figure 5). The
variables declared in the first section have static addresses
in the local memory. Thus, the instruction fsub $lr2 yi

$r10v ; fmul $ti $ti $t means ”subtract the vector vari-
able yi from long scalar register 2 and store the result as
short vector register starting at address 10, and calculate
the square the result of the previous instruction (in the T
register) and store that to the T register.

This example is rather complex and long, because we cal-
culate x−3/2 using Newton iteration. Initial guess is made
in lines 38 to 54, and Newton iteration (5 times) is done in
lines 55 to 77.

From this description, the assembler generates interface
functions to send xi and xj data and let the GRAPE-DR
hardware run. The following C-code fragments is the defi-
nition of these functions and structs used by them.

struct SING_hlt_struct0{

double xi;

double yi;

double zi;

};

struct SING_hlt_vector_struct0{

double xi[4];

double yi[4];

double zi[4];

};

struct SING_elt_struct0{

double xj;

double yj;

double zj;

double mj;

double eps2;

};

struct SING_result_struct{

double accx;

double accy;

double accz;

double pot;

};

struct SING_result_vectorstruct{

double accx[8];

double accy[8];

double accz[8];

double pot[8];

};

void SING_grape_init();

int SING_send_i_particle(struct

SING_hlt_struct0 *ip,

int n);

int SING_send_elt_data0(struct

SING_elt_struct0 *ip,

int index_in_EM);

int SING_grape_run(int n);

int SING_get_result(struct

SING_result_struct *rp);

The application program can use GRAPE-DR by calling
the five functions defined above. This is rather similar to us-
ing GRAPE hardware. Communications between the host
and GRAPE-DR are performed through two “send” func-
tions and one “get” function.

At the first sight, one might think this programming
model is far too specialized to the calculation of particle-
particle interaction. It turned out, however, that with a few
extensions this model is applicable to a wide range of appli-
cations, such as parallel integration of three-body problem,
matrix multiplication, evaluation of two-electron integrals
etc.

We have developed a compiler which generates the assem-
bly code for the same gravitational force calculation from
the following description.

/VARI xi, yi, zi

/VARJ xj, yj, zj, mj, e2;;

/VARF fx, fy, fz;

dx = xi - xj;

dy = yi - yj;

dz = zi - zj;

r2 = dx*dx + dy*dy + dz*dz + e2;

r3i= powm32(r2);

ff = mj*r3i;

fx += ff*dx;

fy += ff*dy;

fz += ff*dz;

Currently, the code generated by this compiler is not very
optimized. We are working on this issue.

8. REFERENCES
[1] J. Barnes and P. Hut. A hiearchical o(nlogn) force

calculation algorithm. Nature, 324:446–449, 1986.

[2] W.J. Bouknight, S.A. Denenberg, D.E. McIntyre, J.M.
Randall, A.H. Sameh and D.L. Slotnick, The ↪a ↪aIlliac IV
system, Proc. IEEE, vol. 60, no. 4, April 1972, pp.
369-388

[3] T. Fukushige, J. Makino, and A. Kawai. GRAPE-6A: A
Single-Card GRAPE-6 for Parallel PC-GRAPE Cluster
Systems. Publ. Astr. Soc. Japan, 57:1009–1021, Dec.
2005.

[4] L. Greengard and V. Rokhlin. A fast algorithm for
particle simulations. Journal of Computational Physics,
73:325–348, December 1987.

[5] T. Hamada, T. Fukuishige, and J. Makino. Pgpg: An
automatic generator of pipeline design for
programmable grape systems. Publ. Astr. Soc. Japan,
57:799–813 2005.

[6] W. D. Hillis. The Connection Machine. MIT Press,
Cambridge, Massachusetts, 1985.

[7] T. Nishikawa, M. Inaba, and K. Hiraki. flat-c: An
implementation of c language for highly-parallel
computers (in japanese). In Proceedings of
SWoPP2005. IPSJ, 2005.

[8] J. L. Potter. The Massively Parallel Processor. The
MIT Press, Cambridge, Massachusetts, 1985.

[9] D. Sugimoto, Y. Chikada, J. Makino, T. Ito,
T. Ebisuzaki, and M. Umemura. A special-purpose
computer for gravitational many-body problems.
Nature, 345:33–35, 1990.

