GRAPE Project

Junichiro Makino

Department of Astronomy,
School of Science, University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Abstract

We overview our GRAPE (GRAvity PipE) project to develop special-purpose
computers for astrophysical N-body simulations. The basic idea of GRAPE is to
attach a custom-build computer dedicated to the calculation of gravitational in-
teraction between particles to a general-purpose programmable computer. By this
hybrid architecture, we can achieve both a wide range of applications and very high
peak performance. Our newest machine, GRAPE-6, achieved the peak speed of 32
Tflops, and sustained performance of 11.55 Tflops, for the total budget of about 4
million USD.

We also discuss relative advantages of special-purpose and general-purpose com-
puters and the future of high performance computing for science and technology.

Key words: Computational Science, Special-purpose computer, Numerical
Algorithms
PACS:

1 Introduction

In this paper, we discuss a relatively unexploited approach to the computa-
tional science, namely to design and build the computer hardwares specialized
and optimized for relatively narrow range of problems.

The development of the computers itself has been regarded as not really being
a part of the computational science. It has been considered as what industries
and/or computer scientists would do for us. This view was okay when a rela-
tively simple computers were still very expensive and had to be shared by a
number of researchers from wide variety of fields. For example, Cray-1, which
was completed in 1976, was really a simple and small computer by today’s
standard. It has just 8 MB of SRAM memory in 16 banks, one multiplier

Preprint submitted to Elsevier Science 20 January 2002

unit and one adder unit. The estimated total gate count was just 300K. In
comparison, today’s single microprocessor integrates 40M transistors, which
is equivalent to around 10 M gates. Thus, the world’s largest supercomputer
25 years ago is less than one tenth of a today’s desktop (or even notebook)
PC in gate count.

With such a small gate count, it was unpractical to design a machine special-
ized to one application. Since it was difficult to make just one floating point
calculation unit, the natural way to make a computer is to add control logics
to that floating point unit so that it can perform operations specified by the
software.

The available number of transistors, however, has been increasing exponen-
tially in the last half century, in the rate of a factor of 100 per every decade.
Thus, present-day microprocessors integrate the number of transistors suffi-
cient to implement several hundreds of floating point units.

Figure 1 shows this situation rather clearly, for the case of single-chip micro-
processors. When it was impossible to implement full-decode multiplier unit
into a single chip, we had to use smaller multipliers which needed multiple
cycles to perform one operation (before 1989). During this period, we could
use the increase in the available number of transistors just to make bigger and
bigger multipliers. Thus, in 1980s a factor of 100 improvement in the cycle
count, which is consistent with the factor of 100 increase in the number of
transistors, was achieved.

In 1990s, however, the decrease in the operation count has practically halted,
as clearly seen from figure 1. In 1988, Intel shipped the first single-chip mi-
croprocessor which can perform more than one floating point operations per
clock cycle, the i860. If the exponential increase in 1980s had continued in
1990s, we would see microprocessors with several hundreds of floating point
units in 2001. Instead, processors like Intel Pentium 4 still perform only a few
operations per cycle, even though the number of transistors has increased by
a factor of 50 or so.

In other words, practically all the increase in the available number of tran-
sistors in 1990s was spent for things other than the arithmetic units. These
“other” things include large L1 and sometimes L2 caches, multiple execution
units for integer operations, datapath and control units for out-of-order execu-
tion of multiple instructions, additional logics to implement deeper pipelines
and so on.

If we write the same figure for high-end supercomputers, we see essentially the
same trend, but shifted by 15 years. With Cray-1 (1976), supercomputers had
reached the regime where they can perform one floating-point operations per
cycle. Until early 1990s, the evolution of the number of floating point units on

10

EI T T T T T T T T T T IE

: + +

- i ——

1T F ++ + 3

° ; z

% 0.1 3 + 3

. F .
V9]

aQ i]

© 001 E + E

107 b+ .

10_4 _I 1 1] 1 1 1 1] 1 1 1 1 |_

1980 1990 2000

Year

Fig. 1. Number of floating point operations performed per single machine cycle of
representative high-performance microprocessors.

a single supercomputer had been very slow. Machines of early 1990s such as
Hitachi S-3800, NEC SX-4 and Cray T-90 had only a few tens of arithmetic
units, instead of a few thousands which was theoretically possible.

The most obvious way to use multiple floating point units in a single computer
is to develop a parallel computer. Thus, in 1980s, parallel computers based
on one-chip microprocessors and those based on supercomputers were built.
Parallel computers based on microprocessors were mostly distributed-memory
processors, which were essentially a cluster of simple computers connected
by relatively slow and inexpensive network. Thus large machines with more
than 1000 processors were possible. Parallel computers based on supercom-
puters were more complicated shared-memory machines. The shared memory
architecture limited the number of processors to 32 or less.

Though microprocessor-based machines used much higher number of proces-
sors, they were still slow in absolute performance simply because each micro-
processor was slow. Parallel supercomputers offered higher peak performance.

However, in 1980s, the performance of microprocessors had improved drasti-
cally, because they could fully utilize the increase in the available number of
transistors. Thus, by early 1990s, microprocessor-based machines started to
offer better price-performance ratio than parallel supercomputers.

In 1993, Fujitsu announced VPP-500, the first parallel supercomputer with

distributed memory architecture. With this architecture, available number of
processors was boosted to more than 100, resulting in a very large improvement
in the price performance of supercomputers.

However, this move was counteracted by the birth of “Beowulf-class” ma-
chines[1,2], which are really simple cluster of commodity PCs with Intel x86
CPUs connected by standard Ethernet. This architecture offers typically one
order of magnitude better price-performance than other computer architec-
ture, simply because the production cost is low due to mass production. “High-
end” Intel x86 CPUs are made and sold in units of hundreds of millions per
year, while supercomputers were sold in units of hundreds. Thus, the sheer
number of chips reduces the production cost per chip, and yet huge develop-
ment cost can be spent for Intel x86 chip since the total revenue would be tens
of billion USDs.

Thus, at present the computer architecture which offer both the best price
performance and best absolute throughput is a large cluster of PCs with mi-
croprocessors of high-volume production. However, as we have already seen
at the beginning, this architecture, at present, does not make good use of
the transistors available on one chip. To make matters worse, the fraction of
transistors used for floating-point operations will decrease in future. In a few
years, the architecture called on-chip multiprocessor will be common. This
evolutionally path is again following the path of supercomputers, but with
the delay of 20 years. Thus, we can “predict” the future of on-chip multipro-
cessor architecture in the near future rather accurately, by just looking at the
evolution of supercomputers in 1980s: The evolution will be slow.

So our question here is: Is there any better way to design a computer for
scientific simulation? We believe the answer is “yes”, and in the rest of this
paper we describe why we believe so.

In section 2, we discuss the potential advantages and drawbacks of design-
ing and developing special-purpose systems. The potential gain is very large,
since, at least in some cases, we might be able to use a fair fraction of avail-
able transistors to perform useful arithmetic operation. On the other hand,
there are many practical difficulties which would offset the potential gain. In
section 3, we discuss our GRAPE project[3,4] as an example of, well, reason-
ably successful projects to develop special-purpose computers. In section 4,
we speculate on the future of the large-scale scientific computing.

2 Special-purpose computing
2.1 Astrophysical N-body problem

The idea of building special-purpose computers for specific numerical prob-
lems is certainly not new. In fact, the very first digital electronic computers
(ABC and ENIAC) were designed to solve specific problems. However, the
designers of early computers found that their machines could be used for a
much wider range of problems, and thus the evolution of the programmable
general-purpose computer started.

At the time when even the largest supercomputers did not have a fully par-
allel multiplier, it did not make sense to design a special-purpose computer.
Any computer, either special- or general-purpose, consists of arithmetic units
(mainly multipliers), control logic and memory. A special-purpose computer
might have simpler control logic or smaller memory than general-purpose com-
puter. However, if the cost of the arithmetic unit itself is a fair fraction of the
total cost of the machine, we cannot gain much by trying to reduce the cost
of the rest of the system.

This situation, however, has changed completely, as we’ve seen in the pre-
vious section. To give a concrete example, let us discuss the astrophysical
N-body problem and our GRAPE (GRAvity PipE) hardware specialized for
that problem. The master equation for the gravitational N-body problem is
given by:

d Z Gmj———

J#

(1)

|wz_m1‘3’

where x; and m; are the position and mass of the particle with index 7 and
G is the gravitational constant. The summation is taken over all particles
(typically stars) in the system under study.

The number of particles NV varies widely depending on what kind of systems
are studied. A small star cluster like Hyades might consist of several thou-
sand stars. Globular clusters typically contain one million stars, and galaxies
hundreds of billions of stars. In the case of galaxies, it is impossible to model
them on a star-by-star basis, and we model the distribution of stars in the
six-dimensional phase space with much smaller number of particles.

If N is larger than several tens, the calculation of the right-hand side of equa-
tion (1) dominates the total calculation cost. If N is very large, we could
use sophisticated algorithms such as the Barnes-Hut treecode[5], FMM]6], or

the particle-mesh or particle-particle particle-mesh method[7]. However, with
treecode or FMM, the direct evaluation of gravitational interaction between
near-neighbor particles still dominates the total cost. Even in the case of the
particle mesh method, if we want high accuracy, near-neighbor interaction
must be calculated directly.

The calculation itself is rather simple. All we have to do is to calculate and
accumulate the gravitational force between two particles. Also, there is very
large degree of potential parallelism, since in principle we can evaluate all N2
interactions in parallel. Thus, N-body simulations are quite well suited for
execution on massively parallel processors or PC clusters.

As discussed earlier, however, our aim here is to achieve a better use of tran-
sistors than what is realized with present microprocessors. Since N-body sim-
ulations have a large degree of parallelism, we first concentrate on how to
make use of large number of transistors available in one chip. We return to
the problem of parallelization later.

The problem with present microprocessors is that very small fraction of the
available transistors is used to implement floating point arithmetic operations.
The number of floating point units in a single one-chip microprocessor has been
almost constant for the last 10 years, though the number of transistors has
increased by almost two orders of magnitude.

Why the number of floating point units has been just a few, even though there
are enough transistors to integrate hundreds of them? There are essentially
two reasons. The first reason is that we do not know how to use such a large
number of arithmetic units. To be precise, it is of course possible to use multi-
ple arithmetic unit in parallel for applications with high degree of parallelism
such as N-body simulations. Most of scientific applications do have high de-
gree of parallelism, and would run with high efficiency on processors with large
number of arithmetic units. However, at present microprocessors are designed
to achieve the following two goals. The first is to run the most widely used
applications as fast as possible. That is, to run Microsoft Windows operating
system and Microsoft Office application package. The other is to run standard
benchmarks such as SPEC CPU2000 suites as fast as possible. Of course, these
are most important applications and benchmarks from the viewpoint of com-
mercial success. However, it goes without saying that the performance of a
microprocessor for scientific applications has rather little to do with its per-
formance in processing MS-Word documents. Clearly, multiple floating point
units would not help much improving the performance of MS-Word.

The second reason is that it is difficult to provide sufficient memory bandwidth
to keep processors busy. It is not impossible to integrate 100 floating point
arithmetic unit on a chip. However, if they operates independently, or even if

Sl

-15
xFy% 2% & x mult

Fig. 2. The force calculation pipeline

they operate in the SIMD fashion, each unit need to get two words of data
from memory and to store one word of data, to perform one floating-point
operation. If these 100 arithmetic units operate on 500 MHz clock, which is
rather slow by today’s standard, the necessary memory bandwidth would be
150 Gwords/s or 1.2 Tbytes/s, which is about 500 times higher than the speed
of the off-chip transfer bandwidth of today’s microprocessors. A 2GHz Intel
Pentium 4 processor has the theoretical peak transfer bandwidth of just 3.2
GB/s.

Of course, the necessary bandwidth is smaller for operations like summation.
The difference, however, is small compared to the factor of 500 discrepancy
shown above. This huge discrepancy means it is not easy to keep just one pro-
cessor busy. With present clock speed of around 2GHz, one processor needs
the bandwidth of 48 GB/s, or 15 times more than what is actually provided.
It is quite understandable that architects of microprocessors are not too in-
terested in adding more floating point units. External memory cannot feed a
single unit. Unless there is a way to vastly increase the bandwidth, little or
no gain is achieved by increasing the number of floating point units, even for
scientific applications. It makes a lot of sense that they used a large fraction
of the transistors on chip to cache memory, which can somewhat reduce the
necessary off-chip memory bandwidth.

To summarize, though the current chip design with just one or two arithmetic
units looks like a waste of the transistors, processor architects have good rea-
sons to choose such designs.

2.2 Special-purpose computer

If we are to design a computer specialized for N-body simulation, or rather,
the calculation of the gravitational interaction between particles, we can work
around the limitations discussed above.

Figure 2 shows the basic “processor” for our N-body computer. Calculation

of the gravitational force from one particle to another requires some 40 float-
ing point operations, depending on how you count division and square-root
operations. If we assign 10 operations to each of them, we end up with about
40 operations per interaction. Instead of using one arithmetic unit to perform
these 40 operations, we connect 40 floating point arithmetic units in the form
of a pipeline, which calculates and accumulate the force from one particle at
each clock cycle.

With this approach, we can work around the two limitations discussed above.
The first one was the efficiency of the system on commercial applications. This
we simply ignore. Clearly not everybody who buys a PC want a fast computer
for astrophysical N-body simulation.

The second limitation is the memory bandwidth. With the simple pipeline of
figure 2, 40 floating point operations are performed for the input of 4 words.
Thus, there is the saving of a factor of 30, compared to a single arithmetic
unit or multiple units working in an SIMD fashion.

When we integrate multiple pipelines, we can let these pipelines to calculate
the forces on different particles from the same particle. Thus, we can inte-
grate multiple pipelines into a chip without increasing the necessary memory
bandwidth.

It is also possible to reduce the required bandwidth for one pipeline, by let
a single pipeline calculate forces on multiple particles. This can be done by
adding the register files for the input particles and calculated forces, and by
switching them at each clock cycle. We call this the Virtual Multiple Pipeline
(VMP) architecture[8]. The idea of VMP is quite similar to what is now called
as multithredding, but the difference is that VMP reduces the required mem-
ory bandwidth, while usual multithredding only relaxes the requirement for
the memory latency.

Note that many of the above ideas can be applied to the calculation of particle-
particle interaction on general-purpose programmable computer. Thus, with
some careful programming (sometimes in assembly languages), it is possible
to achieve the performance close to the theoretical peak performance of the
processor. Here, the simple fact that there are only a few arithmetic units on
a chip limits the ultimate performance.

Our GRAPE (GRAvity PipE) project is based on this idea of integrating mul-
tiple (both physical and virtual) pipelines specialized for gravitational force
calculation into one chip (or one board, when the number of available transis-
tors was not as large as what is now). To give an idea, the GRAPE-6 system
which was completed in July 2001 integrates 1024 pipeline chips, each with
6 pipeline processors which calculate the gravitational force and its first time
derivative. As a result, single GRAPE-6 processor chip integrate about 350

Host

GRAPE
Computer
O(N) calculations O(N 2) force
calculation

Fig. 3. The basic architecture of GRAPE

floating point arithmetic units.

The clock speed of GRAPE-6 chips is only 100 MHz, though it uses reasonably
advanced 0.25um technology. The reason for this rather low clock speed is
simply that we did not have sufficient resource to fine tune the design. Even
so, with 350 arithmetic units a single chip offers peak speed exceeding 30
Gflops, which is still more than a factor of 10 better than that of fastest
microprocessors. In addition, because of this rather low clock speed the power
consumption and therefore heat dissipation are small (around 15 W). This
low power consumption is quite important in reducing the overall cost of the
system and the running cost (electricity is expensive in Japan).

Since the GRAPE hardware performs only the force calculation, all other
operations, such as the time integration of the orbits of stars and analysis of
the calculated results must be done on somewhere else. Therefore we connect
the GRAPE hardware and general-purpose computer by some communication
link. This is the basic structure of our GRAPE systems, shown in figure 3.

3 GRAPE Project

We started GRAPE Project in 1988. The first machine we completed, the
GRAPE-1 [9] was a single-board unit on which around 100 IC and LSI chips
were mounted and wire-wrapped. We used commercially available IC and LSI
chips to implement force calculation pipeline. This choice was natural con-
sequence of the fact that we lacked both money and experience to design
custom LSI chips. In fact, none of the original design and development team
of GRAPE-1 had the knowledge of electronic circuit more than what was
learned in basic undergraduate course for physics students.

GRAPE-2 is similar to GRAPE-1 since it was also based on commercial LSI
chips. The difference is in the numerical accuracy. For GRAPE-1, we used an
unusually short word format, to make the hardware as simple as possible. The
input coordinates are expressed in 15 bit fixed point format. After subtraction,

the result is converted to 8 bit logarithmic format, in which we use just 3
bits for “fractional” part. This format is used until we obtain 1/r%. The final
accumulation was done in 48 bit fixed point, to avoid overflow and underflow.
The advantage of the short format like 8-bit logarithmic format is that we
could use ROM chips to implement complex functions that require two inputs.
Any function of two 8-bit words can be implemented by one ROM chip with
16-bit address input. Thus, all operations other than the initial subtraction

of the coordinates and final accumulation of the force were implemented by
ROM chips.

The drawback of GRAPE-1 was its limited accuracy, which was insufficient
for fairly wide range of astrophysical simulations, though for many other ap-
plications accuracy of GRAPE-1 turned out to be sufficient. With GRAPE-2,
we used standard IEEE-754 format (64 bit for initial subtraction and accu-
mulation, and 32 bit for all other operations).

GRAPE-3 was our first machine with custom LSI chip. The number format
was again the combination of the fixed point and logarithmic format similar to
what were used in GRAPE-1, but implementation of the arithmetic operations
were quite different since we could not integrate large tables to a custom LSI
chip. Conversions between fixed and logarithmic formats were implemented by
shifters and small lookup table, and addition in logarithmic format is imple-
mented by two adders and one small lookup table. Chip design was done as a
joint research project between University of Tokyo and Fuji Xerox Corp. The
chip was fabricated using 1pm design rule by National Semiconductor. The
number of transistors on chip was 110K. Single chip operates at 20MHz clock
speed, offering the speed of about 0.8 Gflops. We designed a printed-circuit
board with 8 chips, for the speed of 6.4 Gflops per board. Thus, GRAPE-3 is
also our first trial to integrate multiple pipelines into a system.

Also, GRAPE-3 was the first GRAPE machine to be manufactured and sold
by a commercial company. Nearly 100 copies of GRAPE-3 have been sold to
more than 30 institutes (more than 20 outside Japan).

With GRAPE-4, we finally integrated a high-accuracy pipeline into one chip.
Also, with this chip we added the additional pipeline to calculate the first time
derivative of the force, so that we can implement high-order time integration
algorithms in a simple and efficient way [10]. We could not fit a full single
pipeline to a chip with the technology available at that time. So we designed
a “1/3” version of the pipeline which processes x, y and z components of
coordinates serially in three consecutive clock cycles. The chip was fabricated
using 1pm design rule by LSI Logic. Total transistor count was about 400K.

For GRAPE-4, we got a rather large grant of about 2 million USD. So we
were able to build a large system consisted of 1728 pipeline chips (36 PCB

10

Table 1
History of GRAPE project

GRAPE-1 (89/4 — 89/10) 120 Mflops, low accuracy

GRAPE-2 (89/8 — 90/5) 40 Mflops, high accuracy(32bit/64bit)

GRAPE-1A (90/4 — 90/10) 240 Mflops, low accuracy

GRAPE-3 (90/9 — 91/9) 14 Gflops, high accuracy
(
(

GRAPE-2A 91/7 — 92/5) 180 Mflops, high accuracy
HARP-1 92/7 —93/3) 180 Mflops, high accuracy
Hermite scheme
GRAPE-3A (92/1 —93/7) 6 Gflops/board
some 80 copies are used all over the world
GRAPEA4 (92/7 — 95/7) 1 Tflops, high accuracy
Some 10 copies of small machines
MD-GRAPE (94/7 — 95/4) 1Gflops/chip, high accuracy
programmable interaction
GRAPE-5 (96/4 — 99/8) 5Gflops/chip, low accuracy
GRAPE-6 (97/8 — 01/7) 32 Tfops, high accuracy

boards each with 48 pipeline chips). GRAPE-4 system operates on 32 MHz
clock, delivering the speed of 1.1 Tflops. Completed in 1995, GRAPE-4 was
the first computer for scientific calculation to achieve the peak speed higher
than 1 Tflops. Also, for 1995 and 1996 it was awarded the Gordon Bell Prize
for peak performance, which is given to a real scientific calculation on parallel
computer with the highest performance.

Technical details of machines from GRAPE-1 through GRAPE-4 can be found
in our book[4] and reference therein.

GRAPE-5[11] was an improvement over GRAPE-3, with a similar, but more
accurate number format than that was used for GRAPE-3. Also, it integrated
two full pipelines which operate on 80 MHz clock. Thus, single GRAPE-5 chip
offered the speed 8 times more than that of the GRAPE-3 chip, or the same
speed as that of a 8-chip GRAPE-3 board. GRAPE-5 was awarded the 1999
Gordon Bell Prize for price-performance. The GRAPE-5 chip was fabricated
with 0.35um design rule by NEC.

GRAPE-6 is similarly the improvement over GRAPE-4. Since it is our newest
hardware, we’ll give a close inspection of its architecture in the next section.

Table 1 summarizes the history of GRAPE project. Figure 4 shows the evolu-

11

1000 El T I T T T T I T T T T I T lg
100 r + Vectors =
F « MPPS o 3
/u? 10 E o GRAPEs E
aQ E 3
_O - -
E 1F
2 0.1k -
o 3 3
a E 3
%) L]
~ 0.01 F 2
8 E 3
S107 ;
1074 -]
10_5 :1 1 | 1 1 1 1 | 1 1 1 1 | 1 1:

1980 1990 2000

Year

Fig. 4. The evolution of GRAPE and general-purpose parallel computers. The peak
speed is plotted against the year of delivery. Open circles, crosses and stars denote
GRAPEs, vector processors, and parallel processors, respectively.

tion of GRAPE systems and general-purpose parallel computers. One can see
that evolution of GRAPE is faster than that of general-purpose computers.

These GRAPE hardwares, including GRAPE-6, have been applied to a num-
ber of astrophysical problems both by our group and by other researchers
worldwide. Since there are too many of interesting results, we do not try to
list them. Some of the resent results are summarized in the proceedings of ITAU
Symposium 208 “Astrophysical Supercomputing Using Particles”, held in July
2001. Some more informations can be found at http://www.astrogrape.org.

3.1 Machines for Molecular Dynamics

Classical MD calculation is quite similar to astrophysical N-body simulations
since in both cases we integrate the orbit of particles (atoms or stars) which
interact with other particles with simple pairwise force. In the case of Coulomb
force, the force law itself is the same as that of the gravitational force, and
the calculation of Coulomb force can be accelerated by GRAPE hardware.

However, in MD calculations the calculation cost of van der Waals force is not
negligible, though van der Waals force decays much faster than the Coulomb
force (r~7 compared to r—?).

12

It is fairly straightforward to design a hardware which can handle particle-
particle force which is some arbitrary function of the distance between parti-
cles. We approximate the given function by a table of polynomials. In fact, we
use this combination of table lookup and polynomial approximation for the
calculation of 1/r® from r? in GRAPE hardwares. So the actual change in the
design of the hardware is rather minor.

We have designed two machines, GRAPE-2A and MD-GRAPE, following
these lines of idea. GRAPE-2 was built using commercial chips and MD-
GRAPE used a custom designed pipeline chip.

Another difference between astrophysical simulations and MD calculations is
that in MD calculations usually the periodic boundary condition is applied.
Thus, we need some way to calculate Coulomb forces from image particles.
The direct Ewald method is rather well suited for implementation in hardware.
In 1991 we developed WINE-1, a pipeline to calculate the wavespace part of
the direct Ewald method. The real-space part can be handled by GRAPE-2A
or MD-GRAPE hardware.

In 1995, a group led by Ebisuzaki in RIKEN started to develop MDM, a
massively parallel machine for large-scale MD simulations. Their primary goal
is the simulation of protein molecules.

MDM consists of two special-purpose hardware, massively parallel version of
MD-GRAPE (MDGRAPE-2) and that of WINE (WINE-2). MDGRAPE-2
part consisted of 1536 custom chips with 4 pipelines, for the theoretical peak
speed of 25 Tflops. WINE-2 part consists of 2,304 custom pipeline chips, for
the peak speed of 46 Tflops.

MDM shared the 2000 Gordon-Bell performance Prize with GRAPE-6. It also
was selected as the finalist for the 2001 Gordon-Bell performance Prize, again
along with GRAPE-6.

4 GRAPE-6

In 1997, we started the GRAPE-6 project. It’s a five-year project funded by

JSPS (Japan Society for the Promotion of Science), and the planned total
budget is about 500 M JYE.

The GRAPE-6 is essentially a scaled-up version of GRAPE-4[8], with the
peak speed of around 100 Tflops. As of the time of writing, a 32 Tflops system
with 1024 chips is in operation. The peak speed of a single pipeline chip is 31
Gflops. In comparison, GRAPE-4 consists of 1728 pipeline chips, each with

13

Fig. 5. The GRAPE-6 processor chip.

600 Mflops. The increase of a factor of 50 in speed is achieved by integrating
six pipelines into one chip (GRAPE-4 chip has one pipeline which needs three
cycles to calculate the force from one particle) and using 3 times higher clock
frequency. The advance of the device technology (from 1pm to 0.25um) made
these improvements possible. Figure 5 shows the processor chip delivered in
early 1999. The six pipeline units are visible.

Figures 6 and 7 shows the processor board with 32 processor chips and the
32-board system. This 32-board system has the theoretical peak speed of 32
Tflops, and has achieved the sustained speed of 11.5Tflops for the simulation
of 1.4 million-body system.

We plan to extend this system to 80-board, 80-Tflops system by the end of
FY 2001. Single-board systems (4-32 chips) are commercially available.

5 Discussion

5.1 Are special-purpose computers difficult to build?

We have seen that it is possible to develop special-purpose computers which
offers price-performance and also absolute performance better than those of
general-purpose computers by one or two orders of magnitude.

However, our GRAPE project is not the only project to develop special-
purpose computers, and yet it is not too easy to name other projects which
have achieved similar level of success. We briefly discuss why.

14

Fig. 6. The processor board of the GRAPE-6 with 32 processor chips. Four processor
chips are mounted on modules, on which eight memory chips are also mounted on
the bottom side. One board houses eight modules.

Fig. 7. The 32-board, 32-Tflops GRAPE-6 system with its host computer. The host
is a cluster of 4 PCs with 1.7GHz Intel P4 processors connected by 100Mb Ethernet.

15

There are variety of reasons why a project ends up as a failure. These include:

(1) Long development time. Even though there are enormous inefficiency,
the performance of general-purpose computers is still improving at the
rate of a factor of 10 in every five years. Therefore, if you spend five
years to develop a machine, you lose a factor of ten in relative advan-
tage. Of course, in many cases the designers originally underestimated
the development time. So this problem were very difficult to avoid.

(2) Too small gain. Even if your machine achieved the advantage of a factor
of 10 by the time of completion, in five years it will lose all advantages. So
the lifetime of your machine is rather short. If the advantage is a factor
of 10 at the time of the design, the project is guaranteed to fail.

(3) Too wide applications. This is not necessarily a failure, if high perfor-
mance is achieved. However, this is the most common failure which leads
to both small gain and long development time.

(4) Too narrow applications or too difficult to use. If there is not much
scientific outcome from your machine, it would not be regarded as a great
success even if it achieved very good performance.

(5) Obsolete technology/design method. Device technology is moving
very fast, and so is the design software/methodology. So, if the technology
you used was three-year old, you have already lost the relative advantage
of a factor of four.

(6) Untested technology/design method. Even though the advance of
the device technology is pretty well predictable, in most cases what the
manufactures claim that they can deliver would not be delivered on time.
So be careful.

Of course, projects to develop general-purpose computers also suffer most
of the above problems. The advantage of the special-purpose design is the
possibility to make better use of the available transistors. The disadvantage
is the limitations in available design resources (design experts, budget, access
to the latest technology etc etc).

5.2 Future prospect

We overviewed the technological and economical trends in high-performance
scientific computing. At least for certain range of problems, a special-purpose
computer, or, a combination of special- and general-purpose computers such
as our GRAPE systems, offer a real and proven advantage over traditional
general-purpose computers. The relative advantage has been increasing, and
will keep to do so for the next one or two decades, unless some radical change
in the design method for general-purpose computer would take place.

16

Currently, it seems the direction of the evolution of general-purpose computer
is a cluster of commodity PCs. Current microprocessors for commodity PCs
offer very high performance in very low cost, partly because of their low pro-
duction cost due to mass production, and partly because the investment for
the design of the chip is actually very high. The large volume of production
justifies the high development cost. However, the fact that microprocessors
for commodity PCs offer performance better than any other general-purpose
computers on the market does not necessarily imply their design is optimal. As
we have seen, only a tiny fraction of the available transistors is used for actual
arithmetic operations, and that fraction has been decreasing quite rapidly.

Special-purpose systems, at least in principle, will not suffer these problems.
In practice, however, the approaches we have taken so far is becoming more
and more difficult, because the initial development cost of the custom LSI goes
up as the technology advances. The development cost goes up because of two
reasons. The first is that the amount of work to do the logic design, test design,
physical layout and design validation increases as the number of transistors in
a chip increases. In the case of special-purpose systems, the amount of work
for the logic and test design, which we can do in-house, does not increase too
rapidly, but physical layout and design validation, which is the work of the
semiconductor company, take a long time and therefore lots of money. The
second reason is that the investment needed to build the semiconductor plant
increases rapidly as the technology advances.

Roughly speaking, for same physical size of the chip, the amount of money we
paid was inversely proportional to the design rule: around a quarter million
USD for 1um (GRAPE-4) and around 1 million USD for 0.25um (GRAPE-6).
In both case, the size of the chip is around 110mm?. If this trend continues,
the design cost of 0.13um would be two million USD. The total budget must
be significantly larger than the development cost of the chip, since otherwise
the price of a single chip would be too high. It is not easy to get such a large
fund for a project of theoretical study in pure science.

One possible compromise is the use of FPGA (Field programmable gate array)
chips as the building block of the pipelined processors. This choice will reduce
the initial cost from one million dollars to less than ten thousand dollars (the
price of the design software), since the FPGA chip itself is mass-produced and
the design is loaded to a FPGA chip by configuring the switches and lookup
tables in the chip.

Roughly speaking, because of this programmability, the calculation speed
achieved by one FPGA chip is 100 times lower than that can be achieved
with a custom LSI of the same size and same technology. However, this differ-
ence can be offset by the possibility of using the most advanced technology,
the possibility to fine-tune the design to individual problems, and most im-

17

portantly, much shorter design cycle time.

To give an example, large FPGA chips at the time of writing (Summer 2001)
have the nominal gate count of around 1 million, which is sufficient to imple-
ment the logic for a GRAPE-4 chip (100K gates), and the clock speed would
be around 75 MHz or more. Thus, one FPGA chip can deliver 1.5 Gflops.
This might not sound very impressive compared to 31 Gflops of GRAPE-6
chip or around 2 Gflops of present microprocessors. However, compared to
microprocessors, to build a massively parallel machine out of FPGA is much
easier, and we can expect higher execution efficiency, for the same reason as
we achieved higher efficiency on GRAPE hardwares.

Here again, in the long run we might see the same problem as the general
purpose computer. The on-chip wiring would ultimately limit the speed and
the circuit density. Because of the requirement of the programmability, as the
number of transistors on the FPGA chips increases, more and more fraction
of these chips will be used for wiring. However, for the next several years, this
limitation would not be too severe, and it is possible that some new design
philosophy will allow us to make better use of FPGA chips.

It is at least possible to use FPGAs for “proof of the concept” studies, where
we demonstrate that one particular custom design is actually usable and that
it achieves better cost-performance than general-purpose solutions. If that
demonstration was successful, the grant large enough to make custom LSI
might be offered.

To summarize, the initial cost of the large custom LSI might become too
high for the level of the amount of grants we can reasonably expect. However,
machines based on FPGAs can be used for small projects. The cost advantage
of FPGAs will not be as large as that of custom LSI chips, but compared to
general-purpose microprocessors, they still offer large advantage. So we expect
to see many successful projects to apply FPGAs for large-scale computing in
the near future. The largest ones will be done on custom LSIs, but the rest
will be done on FPGAs.

Acknowledgments

We would like to thank Daiichiro Sugimoto, Toshikazu Ebisuzaki, Makoto
Taiji, Tomoyoshi Ito, Toshiyuki Fukushige and many others who were involved
in the development of the six generations of GRAPE hardwares, and Yoko
Funato, Simon Portegies Zwart, Steve McMillan, Piet Hut and again many
others for discussions and collaborations in software development and scientific
works on GRAPE hardwares. This work is supported by the Research for

18

the Future Program of Japan Society for the Promotion of Science (JSPS-
RFTP97P01102).

References

[1]

[4]

[5]

[9]

D. J. Becker, T. Sterling, D. Savarese, D. J. E., U. A. Ranawake, C. V. Packer,
Beowulf: A parallel workstation for scientific computation, in: Proceedings of
the 1995 International Conference on Parallel Processing (ICPP), IEEE Comp.
Soc., Los Alamitos, 1995, pp. 11-14.

T. L. Sterling, J. Salmon, D. J. Becker, D. F. Savarese, How to Build a
Beowulf: A Guide to Implementation and Application of PC Clusters., MIT
Press, Cambridge, MA, 1999.

D. Sugimoto, Y. Chikada, J. Makino, T. Ito, T. Ebisuzaki, M. Umemura, A
special-purpose computer for gravitational many-body problems, Nature 345
(1990) 33-35.

J. Makino, M. Taiji, Scientific Simulations with Special-Purpose Computers —
The GRAPE Systems, John Wiley and Sons, Chichester, 1998.

J. Barnes, P. Hut, A hierarchical o(nlogn) force calculation algorithm, Nature
324 (1986) 446449,

L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, Journal of
Computational Physics 73 (1987) 325-348.

R. W. Hockney, J. W. Eastwood, Computer Simulation Using Particles, IOP
Publishing, Ltd., Bristol, 1988.

J. Makino, M. Taiji, T. Ebisuzaki, D. Sugimoto, Grape-4: A massively parallel
special-purpose computer for collisional n-body simulations, The Astrophysical
Journal 480 (1997) 432-446.

T. Ito, J. Makino, T. Ebisuzaki, D. Sugimoto, A special-purpose n-body
machine grape-1, Computer Physics Communications 60 (1990) 187-194.

[10] J. Makino, S. J. Aarseth, On a hermite integrator with ahmad-cohen scheme for

gravitational many-body problems, Publications of the Astronomical Society of
Japan 44 (1992) 141-151.

[11] A. Kawai, T. Fukushige, J. Makino, M. Taiji, Grape-5: A special-purpose

computer for n-body simulations, Publications of the Astronomical Society of
Japan 52 (2000) 659-676.

19

