New Frontier applications and future HPC architectures

Jun Makino RIKEN Advanced Institute for Computational Science (AICS)

Talk overview

- Past and Present of HPC architectures
- Architectural problems at present and in near future
- "solutions"
- Power wall and "solutions"

Past and Present of HPC architectures

Five eras of evolution of CPUs

- I —1969: Before CDC7600 (before fully pipelined multiplier)
- II —1989: Before Intel i860 (single-chip CPU with (almost) fully pipelined multiplier)
- III —2003:CMOS scaling era (Power \propto size³) From i860 to Pentium 4
- IV —2022(?):Post-CMOS scaling era (Power \propto size) From Athlon 64 X2 to Knights Hill(?)
- V 2022(?)—: Post-Moore era(miniaturization stops) ???

Evolution of Big Irons

- I —1969: Before CDC7600 (before fully pipelined multiplier)
- II —1982: Before Cray XMP (before two multipliers)
- III —1992: From Cray XMP to Cray T-90, or Before Fujitsu VPP500 (shared memory vector machines)
- IV —2002? From VPP500 to VPP5000 (distributed memory vector machines)
- V now? From Earth Simulator (???)

Evolution of microprocessors

- I —1989: Before Intel i860 (before fully pipelined multiplier)
- II —2003: From i860 to Pentium 4 (deep pipeline, single core)
- III —201X? : From Athlon64 X2 to Xeon Phi (multicores with SIMD units)
- IV ???

Big Irons and microprocessors

Era		Big Irons	microprocessors
Ι	multi-cycle MULT	- 1969	- 1989
II	one MULT	- 1982	- 2003
III	multicore	- 1992	- 201X?
\mathbf{IV}	distributed	- 2002	???

Observations:

- Microprocessors follows the evolutionary track of big irons with 20-year delay.
- For microprocessors, transition from shared memory to distributed memory should have happened in 2012. It did not.

Why not distributed memory microprocessors?

Well, what do I mean by "distributed memory microprocessors"? Can there be anything like that?

- If we take the similarity with the Big Irons, it means "VPP500 in a chip"
- This, however, does not make sense, since giving up the cache coherency does not increase the off-chip memory bandwidth.
- With VPP500, by putting one processor to one board, local memory bandwidth is increased.
- With many-core microprocessors, it is not clear how we can increase the local memory bandwidth per core.

Solutions?

Examples of possible solutions

- True 3D TSV technology (local memory physically on top of each core)
- On-chip-only memory architecture
- Hope software/algorithm change will solve the problem...

True 3D TSV technology

- Current 2.5D technology (HBM, HMC or whatever else) is not the solution, since they would give a few TB/s to chips with a few tens of TF.
- We need a single DRAM chip (or a stack of DRAM chips) which can put on top of a processor chip to provide multiple TB/s.
- Technically not impossible, but is the market large enough? (probably no)

On-chip-only memory architecture

- If applications can live with on-chip memory only, distributed-memory single-chip many-core architecture makes sense
- With 10nm technology, 256-512MB/chip is within reach.
- If combined with very low-latency interprocessor communication, it could be used to solve real-world problems very fast.

Software/Algorithm change

- Most likely to happen (or nothing else is likely to happen)
- HPL runs happily on tiny B/F anyway.
- Particle-based simulation codes do not require much memory bandwidth.
- Stencil calculation? Let's hope temporal blocking will solve all problems.
- Unstructured mesh? Well... How about moving to meshless methods?

Temporal blocking

- Read in a small localized region to on-chip memory (cache), and update that region for multiple time steps.
- Can reduce the required bandwidth to the main memory.
- Fully parallelizable 3D algorithms exist

Summary for Architectural problems

- Current microprocessors are facing the same problems as those shared-memory vector machines faced in early '90s.
- Shared-memory vector machines were superseded by distributed-memory machines.
- It is not clear what will supersede current cachecoherent manycores.
- \bullet Most likely nothing will happen. Applications will adapt to tiny B/F.

I hope I will be proven wrong.

How about power consumption

- power $\propto \#$ of transistors
- therefore reduction of transistor count per operation means reduction of power
- low-voltage operation (NTV etc) would give another order of magnitude improvement

Not all processors are created equal

How many Intel engineers transistors it takes to do one floating-point op?

GRAPE-3	1991	$4\mathrm{K}$	apl-specific pipeline		
GRAPE-6	1997	30K	apl-specific pipeline		
GRAPE-DR	2006	400K	SIMD 512-core chip		
Cray-1	1976	400K	early vector		
Intel i860	1989	600K	Beginning of era III		
Earth Simulator	2002	$4\mathrm{M}$	matured vector		
NV Fermi	2010	3M	GPGPU		
Sandy Bridge	2011	40M	Deep in era IV		
Difference of 3-4 orders of magnitude					

Why such a huge difference?

- Two orders of magnitude for programmable cores with double-precision arithmetic
- Two orders of magnitude from number format, specialized pipeline, etc

Possible sources of difference in programmable cores

- Deep pipeline
- Register file
- Cache
- Instruction fetch/decode/....
- Memory interface

So how many transistors do you really need to do one multiplication?

Mantissa	$\# ext{ trs.}$
53	$\sim 100 { m K}$
23	$\sim 20 { m K}$
16	$\sim 10 { m K}$
8	$\sim 3 { m K}$

Quite a large room for "improvement"

Speculations on power consumption

- Reduction by 1-2 orders of magnitude might be possible by streamlining the processor architecture.
- Another 1-2 orders of magnitude by optimizing the word length (need to develop new algorithms).
- Yet another 1 order of magnitude by going to low voltage.
- In total, 3-5 orders of magnitude = 15-25 years.
- Probably more than enough to cover the time to my retirement and beyond. Nothing to worry about.

Summary

- For future HPC architecture, there are two problems: Limit of manycores and limit of power.
- The former will most likely be "solved" by the effort in the application side, though better approaches exist.
- the latter can be ... well, postponed for another 20 years or so.