
New Frontier applications and future
HPC architectures

Jun Makino
RIKEN Advanced Institute for Computational Science (AICS)



Talk overview
• Past and Present of HPC architectures

• Architectural problems at present and in near fu-
ture

• “solutions”

• Power wall and “solutions”



Past and Present of HPC
architectures



Five eras of evolution of CPUs
I —1969: Before CDC7600

(before fully pipelined multiplier)

II —1989: Before Intel i860 (single-chip CPU with
(almost) fully pipelined multiplier)

III —2003:CMOS scaling era (Power ∝ size3 )
From i860 to Pentium 4

IV —2022(?):Post-CMOS scaling era (Power ∝ size )
From Athlon 64 X2 to Knights Hill(?)

V 2022(?)—: Post-Moore era(miniaturization stops)
???



Evolution of Big Irons
I —1969: Before CDC7600

(before fully pipelined multiplier)

II —1982: Before Cray XMP
(before two multipliers)

III —1992: From Cray XMP to Cray T-90, or Before
Fujitsu VPP500 (shared memory vector machines)

IV —2002? From VPP500 to VPP5000
(distributed memory vector machines)

V — now? From Earth Simulator (???)



Evolution of microprocessors
I —1989: Before Intel i860

(before fully pipelined multiplier)

II —2003: From i860 to Pentium 4
(deep pipeline, single core)

III —201X? : From Athlon64 X2 to Xeon Phi
(multicores with SIMD units)

IV — ???



Big Irons and microprocessors
Era Big Irons microprocessors

I multi-cycle MULT - 1969 - 1989

II one MULT - 1982 - 2003

III multicore - 1992 - 201X?

IV distributed - 2002 ???

Observations:

• Microprocessors follows the evolutionary track of
big irons with 20-year delay.

• For microprocessors, transition from shared mem-
ory to distributed memory should have happened
in 2012. It did not.



Why not distributed memory
microprocessors?

Well, what do I mean by “distributed memory micro-
processors”? Can there be anything like that?

• If we take the similarity with the Big Irons, it
means “VPP500 in a chip”

• This, however, does not make sense, since giving
up the cache coherency does not increase the off-
chip memory bandwidth.

• With VPP500, by putting one processor to one
board, local memory bandwidth is increased.

• With many-core microprocessors, it is not clear
how we can increase the local memory bandwidth
per core.



Solutions?
Examples of possible solutions

• True 3D TSV technology (local memory physically
on top of each core)

• On-chip-only memory architecture

• Hope software/algorithm change will solve the prob-
lem...



True 3D TSV technology
• Current 2.5D technology (HBM, HMC or what-
ever else) is not the solution, since they would give
a few TB/s to chips with a few tens of TF.

• We need a single DRAM chip (or a stack of DRAM
chips) which can put on top of a processor chip to
provide multiple TB/s.

• Technically not impossible, but is the market large
enough? (probably no)



On-chip-only memory architecture
• If applications can live with on-chip memory only,
distributed-memory single-chip many-core archi-
tecture makes sense

• With 10nm technology, 256-512MB/chip is within
reach.

• If combined with very low-latency interprocessor
communication, it could be used to solve real-world
problems very fast.



Software/Algorithm change

• Most likely to happen (or nothing else is likely to
happen)

• HPL runs happily on tiny B/F anyway.

• Particle-based simulation codes do not require much
memory bandwidth.

• Stencil calculation? Let’s hope temporal blocking
will solve all problems.

• Unstructured mesh? Well... How about moving to
meshless methods?



Temporal blocking

• Read in a small localized region to on-chip memory
(cache), and update that region for multiple time
steps.

• Can reduce the required bandwidth to the main
memory.

• Fully parallelizable 3D algorithms exist



Summary for Architectural problems
• Current microprocessors are facing the same prob-
lems as those shared-memory vector machines faced
in early ’90s.

• Shared-memory vector machines were superseded
by distributed-memory machines.

• It is not clear what will supersede current cache-
coherent manycores.

• Most likely nothing will happen. Applications will
adapt to tiny B/F.

I hope I will be proven wrong.



How about power consumption
• power ∝ # of transistors

• therefore reduction of transistor count per

operation means reduction of power

• low-voltage operation (NTV etc) would give

another order of magnitude improvement



Not all processors are created equal
How many Intel engineers transistors it takes to do
one floating-point op?

GRAPE-3 1991 4K apl-specific pipeline

GRAPE-6 1997 30K apl-specific pipeline

GRAPE-DR 2006 400K SIMD 512-core chip

Cray-1 1976 400K early vector

Intel i860 1989 600K Beginning of era III

Earth Simulator 2002 4M matured vector

NV Fermi 2010 3M GPGPU

Sandy Bridge 2011 40M Deep in era IV

Difference of 3-4 orders of magnitude



Why such a huge difference?
• Two orders of magnitude for programmable cores
with double-precision arithmetic

• Two orders of magnitude from number format,

specialized pipeline, etc

Possible sources of difference in programmable cores

• Deep pipeline

• Register file

• Cache

• Instruction fetch/decode/....

• Memory interface



So how many transistors do you
really need to do one multiplication?

Mantissa # trs.

53 ∼ 100K

23 ∼ 20K

16 ∼ 10K

8 ∼ 3K

Quite a large room for “improvement”



Speculations on power consumption
• Reduction by 1-2 orders of magnitude might be
possible by streamlining the processor architecture.

• Another 1-2 orders of magnitude by optimizing the
word length (need to develop new algorithms).

• Yet another 1 order of magnitude by going to low
voltage.

• In total, 3-5 orders of magnitude = 15-25 years.

• Probably more than enough to cover the time to
my retirement and beyond. Nothing to worry about.



Summary
• For future HPC architecture, there are two prob-
lems: Limit of manycores and limit of power.

• The former will most likely be “solved” by the
effort in the application side, though better ap-
proaches exist.

• the latter can be ... well, postponed for another 20
years or so.


