
GRAPE-DR, GRAPE-8, and ...

Jun Makino
Center for Computational Astrophysics

and
Division Theoretical Astronomy

National Astronomical Observatory of Japan

Dec 14, 2010 CPS, Kobe

Talk structure

• GRAPE

• GRAPE-DR

• GRAPE-8

• What’s next?

Short history of GRAPE

• Basic concept

• GRAPE-1 through 6

• Software Perspective

Basic concept (As of 1988)

• With N -body simulation, almost all calculation goes to the
calculation of particle-particle interaction.

• This is true even for schemes like Barnes-Hut treecode or
FMM.

• A simple hardware which calculates the particle-particle
interaction can accelerate overall calculation.

• Original Idea: Chikada (1988)

Host
Computer

GRAPE

Time integration etc. Interaction calculation

Chikada’s idea (1988)

• Hardwired pipeline for force calculation (similar to Delft
DMDP)

• Hybrid Architecture (things other than force calculation
done elsewhere)

GRAPE-1 to GRAPE-6

GRAPE-1: 1989, 308Mflops

GRAPE-4: 1995, 1.08Tflops

GRAPE-6: 2002, 64Tflops

Performance history

Since 1995

(GRAPE-4),

GRAPE has been

faster than

general-purpose

computers.

Development cost

was around 1/100.

Software development for GRAPE

GRAPE software library provides several basic

functions to use GRAPE hardware.

• Sends particles to GRAPE board memory

• Sends positions to calculate the force and start

calculation

• get the calculated force (asynchronous)

User application programs use these functions.

Algorithm modifications are necessary to reduce

communication and increase the degree of parallelism

Analogy to BLAS

Level BLAS Calc:Comm Gravity Calc:Comm
0 c=c-a*s 1:1 fij = f(xi, xj) 1:1
1 AXPY N : N fi = Σjf(xi, xj) N : N
2 GEMV N2 : N2 fi = Σjf(xi, xj) N2 : N

for multiple i

3 GEMM N3 : N2 fk,i = Σjf(xk,i, xk,j) N2 : N
“Multiwalk”

• Calc ÀComm essential for accelerator

• Level-3 (matrix-matrix) essential for BLAS

• Level-2 like (vector-vector) enough for gravity

• Treecode and/or short-range force might need Level-3 like
API.

Porting issues

• Libraries for GRAPE-4 and 6 (for example) are

not compatible

• Even so, porting was not so hard. The calls to

GRAPE libraries are limited to a fairly small

number of places in application codes.

• Backporting the GRAPE-oriented code to

CPU-only code is easy, and allows very efficient

use of SIMD features.

• In principle the same for GPGPU or other

accelerators.

Real-World issues with “Porting”

— Mostly on GPGPU....

• Getting something run on GPU is not difficult

• Getting a good performance number compared

with non-optimized, single-core x86 performance

is not so hard.

Real-World issues with “Porting”
continued

• Making it faster than 10-year-old GRAPE or

highly-optimized code on x86 (using SSE/SSE2)

is VERY, VERY HARD (you need Keigo)

• These are *mostly* software issues

• Some of the most serious ones are limitations in

the architecture (lack of good reduction operation

over processors etc)

Quotes
From: Twelve Ways to Fool the Masses When Giving
Performance Results on ==Accelerators Parallel Computers
(D. H. Bailey, 1991)

1. Quote only 32-bit performance results, not 64-bit results.
2. Present performance figures for an inner kernel, and then
represent these figures as the performance of the entire
application.
6. Compare your results against scalar, unoptimized code on
======================Xeons Crays.
7. When direct run time comparisons are required, compare
with an old code on an obsolete system.
8. If MFLOPS rates must be quoted, base the operation count
on the parallel implementation, not on the best sequential
implementation.
12. If all else fails, show pretty pictures and animated videos,
and don’t talk about performance.

History repeats itself — Karl Marx

“Problem” with GRAPE approach

• Chip development cost has become too high.

Year Machine Chip initial cost process

1992 GRAPE-4 200K$ 1µm

1997 GRAPE-6 1M$ 250nm

2004 GRAPE-DR 4M$ 90nm

2010? GDR2? > 10M$ 45nm?

Initial cost should be 1/4 or less of the total budget.

How we can continue?

(Riken “K” costs >1B$...)

Current Generation— GRAPE-DR

• New architecture — wider application range than

previous GRAPEs

• primarily to get funded

• No force pipeline. SIMD programmable processor

• “Parallel evolution” with GPUs.

• Development: FY 2004-2008

The Chip

Sample chip delivered May 2006

90nm TSMC, Worst case 65W@500MHz

Processor board

PCIe x16 (Gen 1) interface

Altera Arria GX as DRAM

controller/communication

interface

• Around 200W power

consumption

• Not quite running at

500MHz yet...

(FPGA design not

optimized yet)

• 819Gflops DP peak

(400MHz clock)

• Available from K&F

Computing Research

(www.kfcr.jp)

GRAPE-DR cluster system

OpenMP-like compiler

Goose compiler (Kawai 2009)

#pragma goose parallel for icnt(i) jcnt(j) res (a[i][0..2])

for (i = 0; i < ni; i++) {

for (j = 0; j < nj; j++) {

double r2 = eps2[i];

for (k = 0; k < 3; k++) dx[k] = x[j][k] - x[i][k];

for (k = 0; k < 3; k++) r2 += dx[k]*dx[k];

rinv = rsqrt(r2);

mf = m[j]*rinv*rinv*rinv;

for (k = 0; k < 3; k++) a[i][k] += mf * dx[k];

}

}

Generates code for single- and double-loops
(Translates to Nakasato’s language)

Performance and Tuning example

• HPL (LU-decomposition)

• Gravity

Matrix-multiplication performance

M=N, K=2048
730 Gflops
(Asymptotic: 770
Gflops)

N=K=2048
490 Gflops

94% of theoretical
peak

Fermi: 300Gflops, 60%

HD5870: 470Gflops, 87%

LU-decomposition performance

Speed in Gflops as
function of Matrix size
A complete rewrite of
HPL
430 Gflops (54% of
theoretical peak) for
N=50K
2x faster than HPL 1.04a
for small N

LU-decomposition tuning

• Almost every know technique

– except for the concurrent use of CPU and GDR (we use
GDR for column factorization as well...)

– right-looking form

– TRSM converted to GEMM

– use row-major order for fast O(N2) operations

• Several other “new” techniques

– Transpose matrix during recursive column
decomposition

– Use recursive scheme for TRSM (calculation of L−1)

Little Green 500, June 2010

#1: GRAPE-DR, #2: QPACE: German QCD machine
#9: NVIDIA Fermi

HPL (parallel LU)

• Everything done for single-node LU-decomposition

• Both column- and row-wise communication hidden

• TRSM further modified: calculate UT −1 instead of T −1U

• More or less working, still lots of room for tuning

Green 500, Nov 2010

??? Where is GRAPE-DR ???

Green 500, Nov 2010

• The performance we submitted: 1474 Gflops/W

• It should be #2 in the list

• Somehow we were not listed

• Little Green 500 list is not even released yet

• Green 500 people are “working” on this

(according to them)

How we achieved 80% improvement?

• Bug fix and performance improvement of software

• Replacement of power supply units (80 PLUS

Gold: ∼ 90% efficiency)

• Reduction of Vcore of Intel CPU (1.2 → 1.05)

• Many other small changes...

Gravity kernel performance

(Performance of individual timestep code not much

different)

 10

 100

 1000

 1000 10000 100000 1e+06

S
pe

ed
 [G

Fl
op

s]

N

Assembly code (which I wrote) is not very optimized

yet... Should reach at least 600 Gflops after rewrite.

GRAPE-8(9?)

Question:

Any reason to continue hardware development?

• GPUs are fast, and getting faster

• FPGAs are also growing in size and speed

• Custom ASICs practically impossible to make

GRAPE-8(9?)

Question:

Any reason to continue hardware development?

• GPUs are fast, and getting faster

• FPGAs are also growing in size and speed

• Custom ASICs practically impossible to make

Answer?

• GPU speed improvement might have slowed down

• FPGAs are becoming far too expensive

• Power consumption might become most critical

• Somewhat cheaper way to make custom chips

(NVIDIA) GPU speed improvement
slowing down?

Clear “slowing down”

after 2006 (after G80)

Reason: shift to more
general-purpose
architecture

Discrete GPU market is
eaten up by unified
chipsets and unified
CPU+GPU

But: HPC market is not
large enough to support
complex chip development

FPGA

“Field Programmable Gate Array”

• “Programmable” hardware

• “Future of computing” for the last two decades....

• Telecommunication market needs: large and fast

chips (very expensive)

Structured ASIC

• Something between FPGA and ASIC

• eASIC: 90nm (Fujitsu) and 45nm (Global

Foundries) products.

• Compared to FPGA:

– 3x size

– 1/10 chip unit price

– non-zero initial cost

• Compared to ASIC:

– 1/10 size and 1/2 clock speed

– 1/3 chip unit price

– 1/100 initial cost (> 10M USD vs ∼ 100K)

GRAPE with eASIC

• Design finalized with eASIC Nextreme-2 chip.

• ∼ 50 pipelines (∼ 500Gflops) per chip.

• 10W/chip.

• 50Gflops/W. (The number for total system is

lower...)

Will this be competitive?

Rule of thumb for a special-purpose computer

project:

Price-performance goal should be more than 100

times better than that of a PC available when you

start the project.

— x 10 for 5 year development time

— x 10 for 5 year lifetime

Compared to CPU: Okay

Compared to GPU: ??? (Okay for electricity)

Will this be competitive?

Rule of thumb for a special-purpose computer

project:

Price-performance goal should be more than 100

times better than that of a PC available when you

start the project.

— x 10 for 5 year development time

— x 10 for 5 year lifetime

Compared to CPU: Okay

Compared to GPU: ??? (Okay for electricity)

Will GPUs exist 10 years from now?

Future of HPC
Major problem: Application range of big systems have become
narrow and will be even narrower

What we want to do: long-term integration.

• 104 years for star formation (107 dynamical time)

• 107 years for planetary formation (107 dynamical time)

• 1010 years for star cluster (106 dynamical time)

What big machines (such as “K”) let you do:
Simulation of O(1) dynamical time for very large systems.

Reasons (common wisdom):

• Performance does not scale beyond 104 cores, how we can
use 106 cores?

• How we write programs for > 106 cores with distributed
memory?

Real issue
Communication latency: ∼ 1µs or larger, 1000s of clock cycles

1. between the cores on a chip

2. between the cores and memory

3. between two nodes

core core

corecore

memory

NIC

core core

corecore

memory

NIC

core core

corecore

memory

NIC

network switch

Communication latency is
large simply because
there are soooo many
steps.

core-memory-cpu-nic-
switch-nic-cpu-memory-
core

What should we do?
Unfortunately, accelerator approach might not be enough.

• integrate core, SIMD core, on-chip memory and NIC to one
chip

• reduce communication latency to adjacent node to < 10 ns

network switch

core SIMD
core

external
memory

on-chip
memory

core SIMD
core

external
memory

on-chip
memory

core SIMD
core

external
memory

on-chip
memory

SIMD core: reduce the
visible number of cores

On-chip memory:
eliminate DRAM access
overhead for small dataset

Who would make such a system?

Summary

• GRAPEs, special-purpose computer for gravitational
N -body system, have been providing 10x - 100x more
computational power compared to general-purpose
supercomputers.

• GRAPE-DR, with programmable processors, has wider
application range than traditional GRAPEs.

• DGEMM performance 730 Gflops,
LU decomposition > 450Gflops

• Achieved the best performance per W (Top 1 in June 2010
Little Green 500 list, 815Mflops/W)

• GRAPE-8(9?) will be “traditional” one, but for new
algorithms

• “general purpose” HPC architecture should change soon....

Tree-Direct hybrid

BRIDGE Hamiltonian (Fujii et al 2007)

Separate internal motion (or potential) of star cluster

from parent galaxy (and interaction with it)

PPPT

Oshino et al (in prep)

PPPT (Particle-Particle, Particle-Tree) Hamiltonian

Separate near field and far field (cutoff could depend

on particle mass)

PPPT example run

Planetesimal run

(earth region 104

particles, 10−10M¯
particles)

Good enough for

planet formation

Okay for star cluster?

Limit of individual timestep
algorithm

Basic idea of individual

timestep:

Particles should have

the timestep just

enough to resolve their

own orbits.

What happens to the forces from short-timescale

particles to long-timescale particles?

What’s happening

They are integrated in a completely wrong way!

Time

• Forces do have rapidly changing components

• If the timestep is large, forces are sampled

“randomly” (if the orbit is not periodic)

When does this happen?

• When the orbital timescale of particles in the

core becomes less than the timestep of typical

particles in the cluster.

• Roughly speaking: If rc ¿ rhN−1/3

• Just before bounce: rc ∼ rh/N ¿ rhN−1/3

rc

Does this really matter?

In the case of a singular isothermal cusp

• The velocity change due to this error can be

comparable to two-body relaxation (smaller by

N1/6).

• Reduction of timestep helps, but only as ∆t1.5

• The only way to suppress this error completely is

to reduce the timesteps of all particles to less

than the core crossing time

Impact on the calculation cost

• Hopefully not so severe for normal star clusters

– the fraction of time for which the core size is

small is small

– Mass spectrum makes the core size larger

• Any system with central massive BH might be

problematic.

PPPT as Possible solution

• Use short enough timestep for tree part

• Accelerate tree part as much as possible

– parallelization

– GRAPE, GPU or whatever

