
Parallel programming in the last 25
years — forward or backward?

Jun Makino
Interactive Research Center of Science

Tokyo Institute of Technology

MODEST-10d: High-Level Languages for Hugely Parallel Astrophysics Simulations:
Dialogues between Computer Scientists and (Astro)physicists Aug 23-24, 2011, CPS,
Kobe



Summary

• Until around early ’90s, there were “parallel languages”
available on high-performance computers.

• They are no longer there.

• HPF is the last to die (still available on NEC parallel vector
machines)

• Why did this happen? What could/should we do?



Talk structure

• Parallel Programming @2011

• Parallel Programming @1986

• Why things has changed?

• What could we do?

• What should we do?



Parallel Programming @2011
Intelspeak (http://www.intel.com/intelpress/sum mcp.htm)

Software developers can no longer rely on increasing clock
speeds alone to speed up single-threaded applications; instead,
to gain a competitive advantage, developers must learn how to
properly design their applications to run in a threaded
environment. Multi-core architectures have a single processor
package that contains two or more processor ”execution cores,”
or computational engines, and deliver-with appropriate
software-fully parallel execution of multiple software threads.
Hyper-Threading Technology enables additional threads to
operate on each core.



Parallel Programming @2011
Intelspeak (http://www.intel.com/intelpress/sum mcp.htm)

Software developers can no longer rely on increasing clock
speeds alone to speed up single-threaded applications; instead,
to gain a competitive advantage, developers must learn how to
properly design their applications to run in a threaded
environment. Multi-core architectures have a single processor
package that contains two or more processor ”execution cores,”
or computational engines, and deliver-with appropriate
software-fully parallel execution of multiple software threads.
Hyper-Threading Technology enables additional threads to
operate on each core.

Sounds like a description of Cray XMP. Are we back in 1982?



In practice...

• Use MPI for multi-node parallelism

• Use either Ptherad or OpenMP for multi-core

• Use either automatic vectorization or SIMD intrinsics for
SIMD units



MPI

• Based on message-passing model

• Probably the model with lowest possible programming
productivity

– Each process can only access its local memory

– Need to use library calls (usually on both sides of
communication) to access remote data

– “correct” parallel execution managed by barriers and
handshakes



An non-MPI program

int main(int argc,char *argv[])

{

int n, i;

double PI25DT = 3.141592653589793238462643;

double pi, h, sum, x;

n=100000000;

h = 1.0 / (double) n;

sum = 0.0;

for (i = 0; i < n; i ++){

x = h * ((double)i - 0.5);

sum += f(x);

}

pi = h * sum;

printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));

return 0;

}



A MPI program

int main(int argc,char *argv[])

{

int done = 0, n, myid, numprocs, i;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x;

int namelen;

char processor_name[MPI_MAX_PROCESSOR_NAME];

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

MPI_Get_processor_name(processor_name,&namelen);

if (myid == 0) {

n=100000000;

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

}



h = 1.0 / (double) n;

sum = 0.0;

for (i = myid + 1; i <= n; i += numprocs){

x = h * ((double)i - 0.5);

sum += f(x);

}

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

if (myid == 0) {

printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));

}

MPI_Finalize();

return 0;

}



Problem with MPI

• Program becomes 2x or more longer...

• Each process need to figure out what it is supposed to do
from its ID.

• Data layout and almost every control structure need to be
changed

• mapping between local array and “global” array should be
taken care of manually. Nothing is automatic



Parallel Programming @1986

void node_domain::calc_accel()

{

int myindex;

mono int i,k;

double dx[NDIM];

acc[0] = acc[1] = acc[2] = 0.0; potential = 0.0;

myindex = (int) this - (int) &node[0];



Parallel Programming @1986

for(i = 0; i < nbody; i++){

double pot, rsq, rsqinv, rinv;

if(myindex != i){

rsq = eps2;

for (k = 0; k < NDIM; k++){

dx[k]=node[i].position[k]-position[k];

rsq += dx[k]*dx[k];

}

rsqinv = 1.0/rsq;

rinv = sqrt(rsqinv);

pot=node[i].mass *rinv;

potential+=pot;

pot *=rsqinv;

for (k=0; k<NDIM; k++) acc[k]+=pot*dx[k];

}

}

}



Connection Machine C*

• Machine image: huge SIMD machine with local memory

• Programming model: virtual node. Programmers need not
make mapping between physical processors and data
structure.

• Communication is done through assignment operation.

You still need to rewrite your program, but it is not 2x longer.



The Connection Machine

1986 Thinking Machine
Corporation

SIMD machine with up
to 64k one-bit processors

2048 Weitek
floating-point processors

around 10Gflops peak



Why things has changed?

• Because Thinking Machines Corporation went bankrupt in
1994

• Vector supercomputers and other parallel machines were all
killed by first RISC processors and then x86 processors

• It was impractical to use parallel languages on a cluster of
RISC processors



Why parallel languages are bad on
clusters

• practical parallel languages are data-parallel languages

• memory hierarchy made efficient implementation of
data-parallel languages very difficult

• high-latency, low-bandwidth network added more difficulty



What could we do?
Constraints:
Compared to floating-point performance,

• Relative bandwidth to off-chip memory will keep
decreasing.

• Relative communication bandwidth will keep decreasing
too.

So data-parallel languages will become even more unpractical.



What should we do?



What should we do?

...



Summary

• Until around early ’90s, there were “parallel languages”
available on high-performance computers.

• They are no longer there.

• HPF is the last to die (still available on NEC parallel vector
machines)

• Why did this happen? What could/should we do?


