Exascale computers in -2019?

Jun Makino ELSI, Tokyo Institute of Technology RIKEN Advanced Institute for Computational Science

Large-Scale simulation of Formation and Evolution of Planetary Systems: Kobe 2013 Summer Workshop, Aug 7-8, 2013

Structure of the talk

- Advance of the Supercomputers: 1950-2010
- Problems we see today
 - Power consumption
 - Parallelization overhead
 - How you develop/maintain codes???
- Solutions?
- Japanese Exascale Project

Advance of the Supercomputers

Figure 1. Moore's law and part performance of various "supercomputers" over time. 1940-2000: 100 times per decade

Advance of the Supercomputers

Problem 1: Power consumption

ENIAC	1947	$140 \mathrm{kW}$
Cray-1	1976	$115 \mathrm{kW}$
Cray C90	1991	$500 \mathrm{kW}$
ASCI Red	1997	$850 \mathrm{kW}$
ASCI White	2000	$2 \mathrm{MW}$
\mathbf{ES}	2002	$6 \mathrm{MW}$
ORNL XT5	2008	$7\mathrm{MW}$
K-computer	2012	$20\mathrm{MW}$

If we plot data...

Faster-than-exponential increase

Why?

- Price increased: ASCI Red: \$ 50M, K-computer: \$ 1G
- Power consumption per chip (or per cm^2 of silicon) increased
- Price per chip (or per cm² of silicon) decreased

Power consumption per cm^2 of silicon

cooling reached)

Problem 2: Parallelization overhead

 Number of floating-point units (Multiply and add)

 Cray-1
 1976
 1

 Cray C90
 1991
 16

 ASCI White
 2000
 16,384

 ES
 2002
 40,960

 K computer
 2012
 2,820,096

K computer is good for large problems (with small number of timesteps) but not so good for problems that require large number of timesteps.

Example of performance scaling

Strong Scaling (内訳)

Molecular Dynamics on K computer

- One cannot go below 5ms/timestep
- Limitation: communication overhead

Is 5ms/step fast enough?

- Yes for cosmology or other really large-N calculations with small number of timesteps
- No for problems that require long simulation time (like planet formation...)

Very roughly speaking, integration of 10Myrs would take 1 year...

Problem 3: How you develop/maintain codes???

- MPI
- OpenMP
- SIMD extensions
- Cache-friendly code
- Accelerators
- ...
- ...

Problem 3: How you develop/maintain codes???

- MPI
- OpenMP
- SIMD extensions
- Cache-friendly code
- Accelerators
- ...
- ...

(I'll not discuss this aspect much...)

Solutions?

- We need to reduce power consumption AND communication overhead.
- We do not need much memory (1TB would be enough to keep 10^{10} particles)

Possible solution:

- Processors with "small" on-chip memory (small means 256MB or more)
- Large number of cores, but in SIMD mode to reduce communication overhead

Massively-parallel SIMD machines

- A lost technology -
- Goodyear MPP (1970s)
- ICL DAP (Late 1970s)
- Thinking Machines Connection Machine-1/2 (Late 1980s)
- Maspar MP-1/2 (Early 1990s)

CM-2 was pretty successful

TMC CM-2

TMC CM-2

- 64k 1-bit processors, each with 64k-bit memory
- \bullet 2048 floating-point units, each shared by 32 processors
- 12-dimensional hypercube network between processor chips (16 processors in one chip)

With the present-day technology, we can integrate 4-8 CM-2s into one chip, for the peak performance of 10-20 Tflops at < 100W

How we reduce power and communication overhead

- Power:
 - Minimize data movement: Remove external memory and cache
 - Minimize instruction fetch and decode: Massive $\underset{\ensuremath{\mathrm{SIMD}}}{\operatorname{SIMD}}$
- Communication overhead:
 - Minimize data movement: Remove external memory and cache, reduce the number of chips
 - Reduce the handshake overhead: Cores in SIMD operation do not need handshake, since they are executing the same instruction

Japanese Exascale Project

NHK TV news reporting: Japan to develop new supercomputer with 100x power of K-computer

Current rough plan

- Follow-up of K-computer: would require 60-80 MW to reach exaflops in 2020
- Combine SIMD "accelerators" with MIMD generalpurpose machine
- MIMD part: Fujitsu design
- SIMD part: Based on our design
 - reduce power consumption by 80%
 - reduce communication latency by at least a factor of $10\,$

Summary

- Current big supercomputers are not ideal for longterm integration of "small" problems ("small" means 10⁷ particles now and 10⁹ particles in 2020)
- We need a new architecture (or revival of an old architecture...) to solve this problem: Massivelyparallel SIMD
- If everything goes well, we will put this MP-SIMD system as part of Japanese Exascale project