
Toward a Science of HPC software
(and hardware)

Jun Makino
FS2020 Project, RIKEN-CCS

Department of Planetology, Kobe University

R-CCS Cafe, Oct 5, 2018

Talk Overview
• Brief introduction of our team: Co-design team
and Particle simulator research team.

• FDPS

– What don’t want to do

– What to do

– Current status and future plan

• How we can make R&D in HPC “Scientific”?

• An example: “The Streamline Aeroplane”

• Another example: The Carnot Cycle

• What is “ideal” in HPC?

• Summary

Team leader, Co-design team,
Flagship 2020 project.

Official words: The mission of the Co-design team is to or-
ganize the ”co-design” between the hardware and software of
the exascale system. It is unpractical to design the many-core
complex processor of today without taking into account the re-
quirement of applications. At the same time, it is also unre-
alistic to develop applications without taking into account the
characteristics of the processors on which it will run. The term
”Co-design” means we will modify both hardware and software
to resolve bottlenecks and achieve best performance.

In a bit more simpler words...
• Today’s microprocessors have become very com-
plex.

• As a result, to develop applications which run ef-
ficiently on today’s processor has become almost
impossible.

• To make the impossible somewhat less impossible,
in the early phase of the microprocessor design,
predict what problems will occur and fix them if
at all possible.

It turned out that there had been really many prob-
lems...

Team leader, particle simulator
research team.

This one I have been involved since 2012.
Simulation methods for hydrodynamics and structural analysis
can be divided into grid-based and particle-based methods. In
the latter case, physical values are assigned to particles, while
the partial differential equation is approximated by the interac-
tions between particles. Particle-based methods have been used
to study phenomena ranging in scale from the molecular to the
entire Universe. Historically, software programs for these ap-
plications have been developed independently, even though they
share many attributes. We are currently developing a“univer-
sal” software application that can be applied to problems en-
compassing molecules to the Universe, and yet runs efficiently
on highly parallel computers such as the K computer.

Current Member
• JM

• Keigo Nitadori, Masaki Iwasawa, Yutaka Maruyama,
Daisuke Namekata, Kentaro Nomura (R-CCS re-
searchers)

• Yutaka Hirai (RIKEN SPD)

• Youhei Ishihara (Ph. Student, Kyoto U.)

What do we actually do?
We have developed and maintaining FDPS (Frame-
work for Developing Particle Simulator).

1. What we (don’t) want to do when writing particle-
based simulation codes.

2. What should be done?

3. Design of FDPS

4. Current status and future plan

What we want to do
• We want to try large

simulations.

• Computers (or the

network of comput-

ers...) are fast enough

to handle hundreds of

millions of particles,

for many problems.

• Largest simulations

still employ 1M or

less particles....
Canup+ 2013

What we want to do
More precisely, what we do not want to do

• We do not want to write parallel programs using
MPI.

• We do not want to modify data structure and loop
structure to make use of data caches.

• We do not want to do complicated optimizations
to hide interprocessor communications.

• We do not want to write tricky codes to let com-
pilers make use of SIMD instruction sets.

• We do not want to do machine-specific optimiza-
tions or write codes using machine-specific lan-
guages.

In other words
• Modern high-end HPC systems have become too
complex and too difficult to program

– Wide SIMD instruction set

– Many-core architecture with hierarchical cache

– Decreasing memory bandwidth

– Distributed memory parallel computer without
global address space

– Accelerators

But what we can do?
Traditional ideas

• Hope that parallelizing compiler will solve all prob-
lems.

• Hope that big shared memory machine will solve
all problems.

• Hope that parallel language (with some help of
compilers) will solve all problems.

But...

• These hopes have never been realized.

• Reason: low performance. Only the approach which
achieves the best performance on the most inex-
pensive systems survives.

Then what can we really do?
1. Accept the reality and write MPI programs and do

optimization
Limitation: If you are an ordinary person the achieved
performance will be low, and yet it will take more
than infinite time to develop and debug programs.
Your researcher life is likely to finish before you
finish programming. (Also, your target machine
will disappear before...)

2. Let someone else do the work
Limitation: If that someone else is an ordinary per-
son the achieved performance will be low, and yet
it will take more than infinite time and money.

• Neither is ideal

• We do need “non-ordinary people”.

Problems with “non-ordinary
people”

• If you can secure non-ordinary people there might
be some hope.

• But they are very limited resource.

If we can apply “non-ordinary people” to many dif-

ferent problems, it could be part of the solution.

How can we apply “non-ordinary
people” to many different problems?
Our approach:

• Formulate an abstract description of the approach
of “non-ordinary people”, and apply it to many
different problem.

• “Many different” means particle-based simulations
in general (FDPS), or regular-grid calculation (For-
mura).

• Achieve the above by “metaprogramming”

To be more specific:
Particle-based simulations includes:

• Gravitational many-body simulations

• molecular-dynamics simulations

• CFD using particle methods(SPH, MPS, MLS etc)

• Meshless methods in structure analysis etc (EFGM
etc)

Almost all calculation cost is spent in the evaluation
of interaction between particles and their neighbors
(long-range force can be done using tree, FMM, PME
etc)

Our solution
Therefore, if we can develop a program which gener-
ates a highly optimized MPI program to do

• domain decomposition (with load balance)

• particle migration

• interaction calculation (and necessary communica-
tion)

for a given particle-particle interaction, that will be
the solution.

Design decisions
• API defined in C++

• Users provide

– Particle data class

– Function to calculate particle-particle interac-
tion

Our program generates necessary library functions.

• Users write their program using these library func-
tions.

Actual “generation” is done using C++ templates.

Status of the code
• Publicly available

• A single user program can be compiled to single-
core, OpenMP parallel or MPI parallel programs.

• Parallel efficiency is very high

• As of version 4.0, the users can use GPUs, and can
write their program in Fortran. (Other languages
with version 5.0)

FDPS Github: https://github.com/FDPS/FDPS

https://github.com/FDPS/FDPS

Domain decomposition

Each computing node

(MPI process) takes care

of one domain

Recursive Multisection

(JM 2004)

Size of each domain are

adjusted so that the cal-

culation time will be bal-

anced (Ishiyama et al.

2009, 2012)

Works reasonably well for up to 160k nodes (so far the
max number of processes we could try)

Sample code with FDPS
1. Particle Class

#include <particle_simulator.hpp> //required
using namespace PS;
class Nbody{ //arbitorary name
public:

F64 mass, eps; //arbitorary name
F64vec pos, vel, acc; //arbitorary name
F64vec getPos() const {return pos;} //required
F64 getCharge() const {return mass;}//required
void copyFromFP(const Nbody &in){ //required

mass = in.mass;
pos = in.pos;
eps = in.eps;

}
void copyFromForce(const Nbody &out) { //required

acc = out.acc;
}

Particle class (2)
void clear() { //required

acc = 0.0;
}
void readAscii(FILE *fp) {//to use FDPS IO

fscanf(fp,
"%lf%lf%lf%lf%lf%lf%lf%lf",
&mass, &eps, &pos.x, &pos.y, &pos.z,
&vel.x, &vel.y, &vel.z);

}
void predict(F64 dt) { //used in user code

vel += (0.5 * dt) * acc;
pos += dt * vel;

}
void correct(F64 dt) { //used in user code

vel += (0.5 * dt) * acc;
}

};

Interaction function

template <class TParticleJ>
void CalcGravity(const FPGrav * ep_i,

const PS::S32 n_ip,
const TParticleJ * ep_j,
const PS::S32 n_jp,
FPGrav * force) {

PS::F64 eps2 = FPGrav::eps * FPGrav::eps;
for(PS::S32 i = 0; i < n_ip; i++){

PS::F64vec xi = ep_i[i].getPos();
PS::F64vec ai = 0.0;
PS::F64 poti = 0.0;

Interaction function
for(PS::S32 j = 0; j < n_jp; j++){

PS::F64vec rij = xi - ep_j[j].getPos();
PS::F64 r3_inv = rij * rij + eps2;
PS::F64 r_inv = 1.0/sqrt(r3_inv);
r3_inv = r_inv * r_inv;
r_inv *= ep_j[j].getCharge();
r3_inv *= r_inv;
ai -= r3_inv * rij;
poti -= r_inv;

}
force[i].acc += ai;
force[i].pot += poti;

}
}

Time integration (user code)

template<class Tpsys>
void predict(Tpsys &p,

const F64 dt) {
S32 n = p.getNumberOfParticleLocal();
for(S32 i = 0; i < n; i++)

p[i].predict(dt);
}

template<class Tpsys>
void correct(Tpsys &p,

const F64 dt) {
S32 n = p.getNumberOfParticleLocal();
for(S32 i = 0; i < n; i++)

p[i].correct(dt);
}

Calling interaction function through
FDPS

template <class TDI, class TPS, class TTFF>
void calcGravAllAndWriteBack(TDI &dinfo,

TPS &ptcl,
TTFF &tree) {

dinfo.decomposeDomainAll(ptcl);
ptcl.exchangeParticle(dinfo);
tree.calcForceAllAndWriteBack

(CalcGrav<Nbody>(),
CalcGrav<SPJMonopole>(),
ptcl, dinfo);

}

Main function
int main(int argc, char *argv[]) {

F32 time = 0.0;
const F32 tend = 10.0;
const F32 dtime = 1.0 / 128.0;
// FDPS initialization
PS::Initialize(argc, argv);
PS::DomainInfo dinfo;
dinfo.initialize();
PS::ParticleSystem<Nbody> ptcl;
ptcl.initialize();
// pass initeraction function to FDPS
PS::TreeForForceLong<Nbody, Nbody,

Nbody>::Monopole grav;
grav.initialize(0);
// read snapshot
ptcl.readParticleAscii(argv[1]);

Main function
// interaction calculation
calcGravAllAndWriteBack(dinfo,

ptcl,
grav);

while(time < tend) {
predict(ptcl, dtime);
calcGravAllAndWriteBack(dinfo,

ptcl,
grav);

correct(ptcl, dtime);
time += dtime;

}
PS::Finalize();
return 0;

}

Remarks
• User-defined particle class should have several “re-
quired” member functions

• Multiple particles can be defined (such as dark
matter + gas)

• User-defined interaction function should be opti-
mized to a given architecture for the best perfor-
mance (for now)

• This program runs fully parallelized with OpenMP
+ MPI(taken care within FDPS)

• SIMD should be taken care in interaction function.
Accelerator should be too.

Performance example
• Weak scaling with

10M

particles/process

• Simulation of

planetary rings

• Optimized version

for PEZY-SC2

and Sunway

TaihuLight

• 40% and 23.5% of

the theoretical

peak

performance.

Users of FDPS
• So far, ∼ 20 scientific papers have been published

• Astrophysics, Planetary Science, Material Science,
and more

• There are many more users in various fields

FDPS summary
Iwasawa+2016 (Publ. Astron. Soc. J. 2016, 68,
54/arXive 1601.03138, https://github.com/FDPS/FDPS)

• FDPS offers library functions for domain decom-
position, particle exchange, interaction calculation
using tree.

• Can be used to implement pure Nbody, SPH, or
any particle simulations with two-body interactions.

• Use essentially the same algorithm as used in our
treecode implementation on K computer (GreeM,
Ishiyama, Nitadori and JM 2012).

• Runs efficiently on K, Xeon clusters or GPU clus-
ters

What we learned from FDPS
development

• Frameworks like FDPS can be used to make good
use of a wide variety of processor architectures

• “easy to use” does not necessarily mean “easy to
achieve high efficiency”

• “High efficiency” does not necessarily mean high
energy efficiency

The goal of HPC R&D: Provide tools to solve scientific
problems “efficiently”

Question:

What is the meaning of “efficiency”? Is there any
scientific definition?

How we can make the R&D of HPC
software and hardware “Scientific”?
What do I mean by scientific?

• Our approach for HPC application development is
rather “problem-driven”. Try an existing code on
a new architecture, see what happens, and fix the
problems,

• Our approach for HPC architecture is, well, “evo-
lutionary” at best.

• Scientific approach should be driven by the first
principle, whatever it is.

Let’s look at examples in other fields.

Disciplines based on scientific
approach

• An example: “The Streamline Aeroplane”

• Another example: The Carnot Cycle

• The meaning of “Scientific” approach for HPC

The Streamline Aeroplane

B. Melville Jones, The Streamline

Aeroplane, Journal of the Royal

Aeronautical Society, 33(1929)

Albatross

Sopwith Camel
(UK WWI fighter aircraft)

They look different

Albatross is clean, and Sopwith Camel is, well, not.

How we can quantify the difference?
“Looks clean” is not quite enough for science.

Question here: How much we can reduce the aerodynamic drag?

Answer (from fluid dynamics):
There are terms that can be reduced and terms that cannot.

Drag

induced drag − remain finite (Aspect ratio)

parasite drag

{
Pressure drag − can be reduced down to zero
Frictional drag − limit due to total area

Result of measurements

horizontal axis:

velocity

vertical: power

normalized by

weight

Solid curves:

theoretical limits
(different curves with span- and area-load)
Points: real aircrafts. Best one: Spirit of St.Louis

Split of St. Louis

Still more than three times the limit
Further possible improvements include:
engine cowl, retractable gear, cantilever wing

Modern aircrafts

A glider Boeing 787

Even the B787 looks quite smart and close to ideal
one.

Another example: The Carnot Cycle
Question here: How much “usable” work we can ex-
tract from a heat source

(Final theoretical) Answer: The first and second laws
of thermodynamics.

Actual efficiency cannot exceed that of the Carnot Cy-
cle:

ηc =
Th − Tl

Th

where: Th temperature of high-temperature source
Tl temperature of low-temperature source(ambient)

Some examples

Th(C) ηc η

Modern Natural Gas 1500 0.83 0.60

Nuclear (LWR) 330 0.52 0.33

One need to go to high temperature to achieve high
efficiency

What is the meaning of Scientific
approach to HPC R&D?

• In the above two examples of aircrafts and heat
engines, the goal is the energy efficiency.

• For HPC R&D, the ultimate goal should also be
the energy efficiency too, because:

for modern HPC systems, the cost of electricity is
becoming higher than the hardware cost. Thus,
energy efficiency directly determines the available
computing power.

For a given calculation, there must be the lower

limit for the required energy, and the best

computer is defined as a machine which achieves

that minimum required energy.

Can we define the “lower limit”?
Possible objections include:

1. Lower limit depends on the semiconductor tech-
nology.

2. Even if we assume that there is a lower limit for a
given application, each application requires specific
architecture to realize its lower limit. It is clearly
impossible to build a machine for each application,
and thus such lower limit is practically useless.

3. Since the algorithms used for applications will change,
the lower limit will also change, and we cannot de-
fine the lower limit as a long-term target.

We’ll discuss each point.

Point 1
Lower limit depends on the semiconductor technol-

ogy.

• Well, in the post-Moore era, the semiconductor
technology doesn’t evolve as fast as it did in 20C.

• Therefore, now it is meaningful to ask: What is the
minimum energy consumption for a given semicon-
ductor technology?

• We should be able to give a simple and fundamen-
tal answer as in the case of aircrafts and heat en-
gines, and such an answer should be the basis for
the scientific theory for HPC

Point 2
Even if we assume that there is a lower limit for a

given application, each application requires specific

architecture to realize its lower limit. It is clearly

impossible to build a machine for each application,

and thus such lower limit is practically useless.

• This was certainly an meaningful argument in 20C.
General-purpose machines built with the latest tech-
nology outperformed application-specific ones in a
few years.

• Now in the post-Moore era, this will no longer hap-
pen.

• On the other hand, it becomes prohibitingly ex-
pensive to make an ASIC for a specific application.
We need something else.

Point 3
Since the algorithms used for applications will

change, the lower limit will also change, and we

cannot define the lower limit as the long-term tar-

get.

• Computational Science has now the history of 70
years, and basic algorithms for various problems
has now become sort of stable.

• There will be many changes in details, but the ba-
sic concepts like regular grid, irregular grid, parti-
cles and graphs will remain unchanged.

• Many new methods for parallelization are now be-
ing developed, but they are mostly solutions for
the problem that hardware is becoming more com-
plex, and does not lead to the reduction of opera-
tion count.

Classification of power consumption
Aircrafts:

Drag

induced drag − remain finite (Aspect ratio)

parasite drag

{
Pressure drag − can be reduced down to zero
Frictional drag − limit due to total area

Computers (for HPC)

Energy consumption

Combinatorial Logic for Arithmetic operation{
Dynamic
Static(leak)

Storage(Memory,Register)
Data movement(Clock,Latch,Wires)
Control logic(instruction decode etc)

Dynamic power for arithmetic operations cannot be elimi-
nated. Everything else can be.

How far are we from
energy-minimum computing?

Example: K computer — roughly 1GF/W with 100%
efficiency.

• Optimized grid CFD calculation would achieve 15%:
0.15GF/W.

• The energy consumption of an FP64 unit in 40/45nm
technology would be 25GF/W or around. Thus,
our energy efficiency is around 0.6%.

• Even for an application which achieves 50% “effi-
ciency” on K, the energy efficiency is still around
2%.

• Post-K will be around 3 times more energy efficient
(purely by design)

• X86 processors are/will be much worse.

Possible criticisms
• Data movement is essential for computation and
its cost should not be ignored.

• Universality is more important

• This is clearly an extreme argument with little
practical meaning.

• Even when we specify an application, we cannot
make “others” zero.

In the following, we’ll discuss the last one.

Minimum-energy computers for
specific applications

Let’s consider

1. Regular grid (neighbor communication only, ex-
plicit stepping)

2. Particles

3. Dense Matrix

4. Irregular grid

Regular grid
• For explicit timestepping, we can construct a spe-
cialized pipeline for arithmetic operations, which
would minimize the main memory access.

• Modern high-order, high-accuracy schemes require
very large numbers of operations per step per grid
point. Thus, memory access cost can be made
small.

• (Not that we can achieve this on existing or coming
machines)

Particles
• Operations per particle per step is huge, of the
order of 104 or more.

• Specialized pipeline for particle-particle interaction
is always possible.

• Thus memory access cost can be made negligible.

Dense Matrix
• Most operations can be transformed to matrix-
matrix multiplications

• By blocking, memory access of matrix-matrix mul-
tiplications can be minimized.

Irregular grid
• This is problematic

• Classical CG requires large amount of memory ac-
cess.

• Multigrid is even more problematic

• On the other hand, in some of modern parallel
methods, locally dense matrices are used.

• In my opinion, we should develop stable and accu-
rate explicit schemes for irregular grids

Minimum-energy computers for
specific applications

• Seems possible except for irregular grids.

• iterative methods on irregular grids are and will be
problematic on large-scale parallel machines. We
probably will need something else.

Thus, we can measure the difference between the the-
oretical limit and real machines, by measuring the
power consumption of arithmetic units and total power
consumption.

Minimum-energy General-Purpose
computer

• We can define the minimum-energy computer for
each applications

• For general-Purpose computers, one can simply
measure the difference with the theoretical limits
for several “typical” applications and take what-
ever mean one like.

• For a given set of application workload, there must
be an optimal architecture. In other words, this is
a mathematically well-posed problem.

• So “general purpose” might difficult, but “Multi-
purpose” is certainly possible.

Summary
• Concepts like “Streamline Aeroplane” and “Carnot
Cycle” played extremely important roles as guid-
ing principles.

• They are important because they define the theo-
retical limit in what we can do.

• There is no such clear guiding principle which de-
fines the theoretical limit in computer architecture.

• In this talk, I tried to define such theoretical limit,
for numerical calculations.

• It is defined as the power consumption of combi-
natorial arithmetic logic.

• Current computers are far from the limit, typically
by a factor of 100 or more.

Computers now and Ideal computer

Computers now Ideal computer

Background

Where will we be in 2028?
• 2nm technology?

• Should achieve 40-60 times better power efficiency
compared to TSMC 40LP

• 1-1.5TF/W

• Even when we consider loss in DC/DC conversion,
500GF/W (DP) should be possible.

• With the efficiency less than 10%, we will end up
with less than 100GF/W.

Five eras of evolution of CPUs
I —1969: Before CDC7600

(before fully pipelined multiplier)

II —1989: Before Intel i860 (single-chip CPU with
(almost) fully pipelined multiplier)

III —2003:CMOS scaling era (Power ∝ size3)
From i860 to Pentium 4

IV —2022(?):Post-CMOS scaling era (Power ∝ size)
From Athlon 64 X2 to Knights Hill(?)

V 2022(?)—: Post-Moore era(miniaturization stops)
???

Evolution of Big Irons
I —1969: Before CDC7600

(before fully pipelined multiplier)

II —1982: Before Cray XMP
(before two multipliers)

III —1992: From Cray XMP to Cray T-90, or Before
Fujitsu VPP500 (shared memory vector machines)

IV —2002? From VPP500 to VPP5000
(distributed memory vector machines)

V — now? From Earth Simulator (???)

Evolution of microprocessors
I —1989: Before Intel i860

(before fully pipelined multiplier)

II —2003: From i860 to Pentium 4
(deep pipeline, single core)

III —201X? : From Athlon64 X2 to Xeon Phi
(multicores with SIMD units)

IV — ???

Big Irons and microprocessors
Era Big Irons microprocessors

I multi-cycle MULT - 1969 - 1989

II one MULT - 1982 - 2003

III multicore - 1992 - 201X?

IV distributed - 2002 ???

Observations:

• Microprocessors follows the evolutionary track of
big irons with 20-year delay.

• For microprocessors, transition from shared mem-
ory to distributed memory should have happened
in 2012. It did not. (Even GPGPUs have physi-
cally shared memory)

Why not distributed memory
microprocessors?

Well, what do I mean by “distributed memory micro-
processors”? Can there be anything like that?

• If we take the similarity with the Big Irons, it
means “VPP500 in a chip”

• This, however, does not make sense, since giving
up the cache coherency does not increase the off-
chip memory bandwidth.

• With VPP500, by putting one processor to one
board, local memory bandwidth is increased.

• With many-core microprocessors, it is not clear
how we can increase the local memory bandwidth
per core.

Where are we now?
• Past trend: multi- and many-core processors with
wide SIMD FPUs.

• Hierarchical cache memory

• relatively slow and high-latency interconnection

Question: How one can develop efficient HPC appli-
cations?

