
Current status of FDPS/ Processor
design from HPC perspective

Jun Makino
FS2020 Project and Particle Simulator Research Team, R-CCS

Department of Planetology, Kobe University

R-CCS Cafe, Sep 2, 2019

Talk Overview
• Brief introduction of our team: Co-design team
and Particle simulator research team.

• FDPS

– What don’t want to do

– What to do

– Current status and future plan

• Processor design from HPC perspective

– Short summary of the past history of processor
architectures for HPC

– Where are we now and where to go?

• Summary

Team leader, Co-design team,
Flagship 2020 project.

Official words: The mission of the Co-design team is to or-
ganize the ”co-design” between the hardware and software of
the exascale system. It is unpractical to design the many-core
complex processor of today without taking into account the re-
quirement of applications. At the same time, it is also unre-
alistic to develop applications without taking into account the
characteristics of the processors on which it will run. The term
”Co-design” means we will modify both hardware and software
to resolve bottlenecks and achieve best performance.

In a bit more simpler words...
• Today’s microprocessors have become very com-
plex.

• As a result, to develop applications which run ef-
ficiently on today’s processor has become almost
impossible.

• To make the impossible somewhat less impossible,
in the early phase of the microprocessor design,
predict what problems will occur and fix them if
at all possible.

It turned out that there had been really many prob-
lems...

Team leader, particle simulator
research team.

This one I have been involved since 2012.
Simulation methods for hydrodynamics and structural analysis
can be divided into grid-based and particle-based methods. In
the latter case, physical values are assigned to particles, while
the partial differential equation is approximated by the interac-
tions between particles. Particle-based methods have been used
to study phenomena ranging in scale from the molecular to the
entire Universe. Historically, software programs for these ap-
plications have been developed independently, even though they
share many attributes. We are currently developing a“univer-
sal” software application that can be applied to problems en-
compassing molecules to the Universe, and yet runs efficiently
on highly parallel computers such as the K computer.

Current Members
• JM

• Daisuke Namekata (R-CCS researchers)

• Yutaka Hirai (RIKEN SPD)

• Youhei Ishihara (Ph. Student, Kyoto U.)

Former Member
• Ataru Tanikawa (U. Tokyo)

• Natsuki Hosono (JAMSTEC)

• Takayuki Muranushi

• Steven Rieder (Exeter)

• Long Wang (Bonn)

• Yutaka Maruyama (Architecture Development Team)

• Kentaro Nomura (Kobe U.)

• Keigo Nitadori (Operations and Computer Technologies Di-
vision)

• Masaki Iwasawa (Kobe U.)

• David Michael Hernandez (Harvard)

Codesign and Particle Simulator Research teams will be closed
by the end of FY 2020 and 2021. So we are trying to find some
ways to continue our effort elsewhere. Also, I understand that
the total budget of R-CCS research division is far from sufficient.

What do we do?
We have developed and maintaining FDPS (Frame-
work for Developing Particle Simulator).

1. What we (don’t) want to do when writing particle-
based simulation codes.

2. What should be done?

3. Design of FDPS

4. Current status and future plan

What we want to do
• We want to try large

simulations.

• Computers (or the

network of comput-

ers...) are fast enough

to handle hundreds of

millions of particles,

for many problems.

• Largest simulations

still employ 1M or

less particles....
Canup+ 2013

What we want to do
More precisely, what we do not want to do

• We do not want to write parallel programs using
MPI.

• We do not want to modify data structure and loop
structure to make use of data caches.

• We do not want to do complicated optimizations
to hide interprocessor communications.

• We do not want to write tricky codes to let com-
pilers make use of SIMD instruction sets.

• We do not want to do machine-specific optimiza-
tions or write codes using machine-specific lan-
guages.

In other words
• Modern high-end HPC systems have become too
complex and too difficult to program

– Wide SIMD instruction set

– Many-core architecture with hierarchical cache

– Decreasing memory bandwidth

– Distributed memory parallel computer without
global address space

– Accelerators

But what we can do?
Traditional ideas

• Hope that parallelizing compiler will solve all prob-
lems.

• Hope that big shared memory machine will solve
all problems.

• Hope that parallel language (with some help of
compilers) will solve all problems.

But...

• These hopes have never been realized.

• Reason: low performance. Only the approach which
achieves the best performance on the most inex-
pensive systems survives.

Then what can we really do?
1. Accept the reality and write MPI programs and do

optimization
Limitation: If you are an ordinary person the achieved
performance will be low, and yet it will take more
than infinite time to develop and debug programs.
Your researcher life is likely to finish before you
finish programming. (Also, your target machine
will disappear before...)

2. Let someone else do the work
Limitation: If that someone else is an ordinary per-
son the achieved performance will be low, and yet
it will take more than infinite time and money.

• Neither is ideal

• We do need “non-ordinary people”.

Problems with “non-ordinary
people”

• If you can secure non-ordinary people there might
be some hope.

• But they are very limited resource.

If we can apply “non-ordinary people” to many dif-

ferent problems, it could be part of the solution.

How can we apply “non-ordinary
people” to many different problems?
Our approach:

• Formulate an abstract description of the approach
of “non-ordinary people”, and apply it to many
different problem.

• “Many different” means particle-based simulations
in general (FDPS), or regular-grid calculation (For-
mura).

• Achieve the above by “metaprogramming”

To be more specific:
Particle-based simulations includes:

• Gravitational many-body simulations

• molecular-dynamics simulations

• CFD using particle methods(SPH, MPS, MLS etc)

• Meshless methods in structure analysis etc (EFGM
etc)

Almost all calculation cost is spent in the evaluation
of interaction between particles and their neighbors
(long-range force can be done using tree, FMM, PME
etc)

Our solution
Therefore, if we can develop a program which gener-
ates a highly optimized MPI program to do

• domain decomposition (with load balance)

• particle migration

• interaction calculation (and necessary communica-
tion)

for a given particle-particle interaction, that will be
the solution.

Design decisions
• API defined in C++

• Users provide

– Particle data class

– Function to calculate particle-particle interac-
tion

Our program generates necessary library functions.

• Users write their program using these library func-
tions.

Actual “generation” is done using C++ templates.

Status of the code
• Publicly available (Iwasawa+2016)

• A single user program can be compiled to single-
core, OpenMP parallel or MPI parallel programs.

• Parallel efficiency is very high

• Can use GPGPUs or other accelerators efficiently
(Iwasawa+ 2019)

• As of version 5.0, the users can use GPUs, and can
write their program in Fortran (Namekata+ 2018)
or any language with C FFI.

FDPS Github: https://github.com/FDPS/FDPS

https://github.com/FDPS/FDPS

Domain decomposition

Each computing node

(MPI process) takes care

of one domain

Recursive Multisection

(JM 2004)

Size of each domain are

adjusted so that the cal-

culation time will be bal-

anced (Ishiyama et al.

2009, 2012)

Works reasonably well for up to 160k nodes (so far the
max number of processes we could try)

Sample code with FDPS
1. Particle Class

#include <particle_simulator.hpp> //required
using namespace PS;
class Nbody{ //arbitorary name
public:

F64 mass, eps; //arbitorary name
F64vec pos, vel, acc; //arbitorary name
F64vec getPos() const {return pos;} //required
F64 getCharge() const {return mass;}//required
void copyFromFP(const Nbody &in){ //required

mass = in.mass;
pos = in.pos;
eps = in.eps;

}
void copyFromForce(const Nbody &out) { //required

acc = out.acc;
}

Particle class (2)
void clear() { //required

acc = 0.0;
}
void readAscii(FILE *fp) {//to use FDPS IO

fscanf(fp,
"%lf%lf%lf%lf%lf%lf%lf%lf",
&mass, &eps, &pos.x, &pos.y, &pos.z,
&vel.x, &vel.y, &vel.z);

}
void predict(F64 dt) { //used in user code

vel += (0.5 * dt) * acc;
pos += dt * vel;

}
void correct(F64 dt) { //used in user code

vel += (0.5 * dt) * acc;
}

};

Interaction function

template <class TParticleJ>
void CalcGravity(const FPGrav * ep_i,

const PS::S32 n_ip,
const TParticleJ * ep_j,
const PS::S32 n_jp,
FPGrav * force) {

PS::F64 eps2 = FPGrav::eps * FPGrav::eps;
for(PS::S32 i = 0; i < n_ip; i++){

PS::F64vec xi = ep_i[i].getPos();
PS::F64vec ai = 0.0;
PS::F64 poti = 0.0;

Interaction function
for(PS::S32 j = 0; j < n_jp; j++){

PS::F64vec rij = xi - ep_j[j].getPos();
PS::F64 r3_inv = rij * rij + eps2;
PS::F64 r_inv = 1.0/sqrt(r3_inv);
r3_inv = r_inv * r_inv;
r_inv *= ep_j[j].getCharge();
r3_inv *= r_inv;
ai -= r3_inv * rij;
poti -= r_inv;

}
force[i].acc += ai;
force[i].pot += poti;

}
}

Time integration (user code)

template<class Tpsys>
void predict(Tpsys &p,

const F64 dt) {
S32 n = p.getNumberOfParticleLocal();
for(S32 i = 0; i < n; i++)

p[i].predict(dt);
}

template<class Tpsys>
void correct(Tpsys &p,

const F64 dt) {
S32 n = p.getNumberOfParticleLocal();
for(S32 i = 0; i < n; i++)

p[i].correct(dt);
}

Calling interaction function through
FDPS

template <class TDI, class TPS, class TTFF>
void calcGravAllAndWriteBack(TDI &dinfo,

TPS &ptcl,
TTFF &tree) {

dinfo.decomposeDomainAll(ptcl);
ptcl.exchangeParticle(dinfo);
tree.calcForceAllAndWriteBack

(CalcGrav<Nbody>(),
CalcGrav<SPJMonopole>(),
ptcl, dinfo);

}

Main function
int main(int argc, char *argv[]) {

F32 time = 0.0;
const F32 tend = 10.0;
const F32 dtime = 1.0 / 128.0;
// FDPS initialization
PS::Initialize(argc, argv);
PS::DomainInfo dinfo;
dinfo.initialize();
PS::ParticleSystem<Nbody> ptcl;
ptcl.initialize();
// pass initeraction function to FDPS
PS::TreeForForceLong<Nbody, Nbody,

Nbody>::Monopole grav;
grav.initialize(0);
// read snapshot
ptcl.readParticleAscii(argv[1]);

Main function
// interaction calculation
calcGravAllAndWriteBack(dinfo,

ptcl,
grav);

while(time < tend) {
predict(ptcl, dtime);
calcGravAllAndWriteBack(dinfo,

ptcl,
grav);

correct(ptcl, dtime);
time += dtime;

}
PS::Finalize();
return 0;

}

Remarks
• User-defined particle class should have several “re-
quired” member functions

• Multiple particles can be defined (such as dark
matter + gas)

• User-defined interaction function should be opti-
mized to a given architecture for the best perfor-
mance (for now)

• This program runs fully parallelized with OpenMP
+ MPI(taken care within FDPS)

• SIMD should be taken care in interaction function.
Accelerator should be too.

Performance example
• Weak scaling with

10M

particles/process

• Simulation of

planetary rings

• Optimized version

for PEZY-SC2

and Sunway

TaihuLight

• 40% and 23.5% of

the theoretical

peak

performance.

Users of FDPS
• So far, > 30 scientific papers have been published

• Astrophysics, Planetary Science, Material Science,
and more

• There are many more users in various fields

FDPS summary
Iwasawa+2016 (Publ. Astron. Soc. J. 2016, 68,
54/arXive 1601.03138, https://github.com/FDPS/FDPS)

• FDPS offers library functions for domain decom-
position, particle exchange, interaction calculation
using tree.

• Can be used to implement pure Nbody, SPH, or
any particle simulations with two-body interactions.

• Use essentially the same algorithm as used in our
treecode implementation on K computer (GreeM,
Ishiyama, Nitadori and JM 2012).

• Runs efficiently on K, Xeon clusters or GPU clus-
ters

What we learned from FDPS
development

• Frameworks like FDPS can be used to make good
use of a wide variety of processor architectures

• “easy to use” does not necessarily mean “easy to
achieve high efficiency”

• “High efficiency” does not necessarily mean high
energy efficiency

The goal of HPC R&D: Provide tools to solve scientific
problems “efficiently”

Question:

What architecture can provide the “best” performance?

How we can make the R&D of HPC
software and hardware “Scientific”?
What do I mean by scientific?

• Our approach for HPC application development is
rather “problem-driven”. Try an existing code on
a new architecture, see what happens, and fix the
problems,

• Our approach for HPC architecture is, well, “evo-
lutionary” at best.

• Scientific approach should be driven by the first
principle, whatever it is.

Short summary of the past history of
processor architectures for HPC

1. CDC 6600/7600

2. Cray-1

3. MIPS

4. IBM Power

5. Intel Pentium 4

6. AMD Athlon 64 X2

7. Intel Xeon Phi

CDC 6600/7600 (1964)

• The first machine to use register scoreboarding =
the first machine with efficient superscalar out-of-
order (OOO) execution

• (Probably) the first machine to have a large num-
ber (16-32) of general-purpose registers

Register Scoreboarding
For an instruction sequence like

1 R5 = R1+R2

2 R6 = R3+R4

3 R7 = R5+R6

• Instructions 1 and 2 can be issued in parallel, while Instruc-
tion 3 should wait the completion of previous two instruc-
tions. Register scoreboarding tells when instruction 3 can
be started.

• A different approach is to let the compiler schedule instruc-
tions

• For binary compatibility, OOO is necessary.

Cray-1 (1976)

• Successor of CDC-7600 (or canceled 8600)

• Vector instruction set and vector registers.

• SRAMmemory made it possible to achieved B/F=4
(B/F of XMP was 12)

• Successors: XMP, YMP, C- and T-90: Physical
memory shared by multiple processors. B/F kept
very high.

• To keep high B/F had become impossible. B/F
of NEC vector machines have reduced to 0.5 with
SC-Aurora

MIPS (1985)

• Original MIPS = Microprocessor without Inter-
locked Pipeline Stages

• Thus, all instructions have the same latency and
instruction scheduling was done by software

• In-order scalar processor

• OOO execution was adopted finally with R10K (1996)

IBM Power1 (1990)
First microprocessor with register renaming
For an instruction sequence like

1 R1 = M1

2 R2 =R1*R1

3 M1 = R2

4 R1 = M2

5 R2 =R1*R1

6 M2 = R2

...

(something like for(i=0;i<n;i++)a[i]*=a[i];)
You can issue instruction 4 just after instruction 1,if “R1” of
instruction 4 is physically different from that of instruction 1.
Register renaming takes care of this mapping between “architec-
ture” registers and “physical” registers

Intel Pentium 4 (2000)

• First microprocessor with SIMD instruction for
double 64-bit words. (SSE2).

• SSE2 evolved eventually to AVX-512.

• Intel Xeon processors of 2019 have up to two AVX-
512 units per core. Thus, they can perform 16
double-precision FMA operations per cycle.

AMD Athlon 64 X2 (2005)

• First high-performance multi-core microprocessor

• Now we have up to 64 cores/package with AMD
EPYC 7002

• Large number of cores means multiple levels of
cache memory.

Intel Xeon Phi (2012-2017)

• Intel’s many-core processor for HPC.

• AVX-512, 60-70 cores/die (package)

• 1st gen Knights Corner: 1 AVX512 unit/core

• 2nd gen Knights Landing: 2 AVX512 units/core

• 3rd gen Knights Hills: project canceled

Summary of the history
• Modern processors used for HPC share the follow-
ing features:
superscalar, OOO, register renaming, SIMD in-
struction set, deep cache hierarchy

• In the last 20 years, the advance of the semicon-
ductor technology resulted in the increase of the
available number of transistors, which was used to
increase the SIMD width and the number of cores

• This direction seems to have reached the dead end
with Xeon Phi

So where should we go?

What (I think) we should do
First, we need to understand what we are doing now
to develop software for modern microprocessors, and
investigate better ways.
In order to achieve high efficiency on modern many-
core, wide-SIMD processors, we need to

1. make efficient use of SIMD units

2. use many cores efficiently

3. take advantage of cache hierarchy to reduce main
memory access

Problem with SIMD unit
• Unlike the vector processors in 1980s, stride or in-
direct access have huge performance penalty. Even
the penalty of unaligned sequential access cannot
be ignored

• Even with very wide SIMD units, x86 micropro-
cessors have difficulties in competing with GPG-
PUs and other many-core architectures with sim-
pler hardware, in particular in the field of perfor-
mance per watt.

Problem with many-core
architecture

• The lack of hardware support for synchronization,
direct core-to-core communication and reduction/broadcast
operation makes fine-grain parallelism difficult (Sun-
way processor have support for most of these)

• Coherent shared cache consumes large area and
electricity.

Problem with cache hierarchy
• L1 is very small and thus difficult to reuse data

• The bandwidth of L2 and L3 (and L4) is generally
too low to be useful (better than nothing, but...)

My impression
Looks very similar to the situation when first-generation
RISC processors were developped

• Architecture has “evolved” for some years

• Too many things are done in hardware in ways too
complicated

• We should let software control hardware

• MIPS approach might be necessary, in a more ex-
tended form.

One (old) example — GRAPE-DR

• 512-way SIMD processor, but with local memory
for each core

• Within the local memory, stride or indirect access
can be done with no penalty

• Local memories are dominant on-chip memory (no
large Lx caches). Thus, we have fast access to fairly
large memory (much larger than on-chip LLC of
modern microprocessors)

• Hierarchical on-chip network with the hardware
for broadcast/reduction makes fine-grained paral-
lelism highly efficient (without this it would be dif-
ficult to make efficient use of 512 cores)

• Horizontal microcode (almost) exposed to software

MN-Core (aka GRAPE-PFN2)

• The processor chip PFN (Preferred Networks, a
Japanese AI venture) has been developing in col-
laboration with some of our group in RIKEN R-
CCS/Kobe University.

• Goal: Highest performance and highest performance-
per-watt for training DNNs (CNNs).

• Planned peak FP16(-equivalent) performance of sin-
gle card: 524 Tops

• Target power consumption: <500W, > 1Tops/W

Past history, current status, and fu-
ture plan.

• Feb 2016: JM visited PFN at Hongo-3choume

• June 2016: Joint application to NEDO (“small” grant, 40MJYE/year
×2) (PFN moved to Ote-machi)

• July 2016: PFN chip project started. Plan for two chips:
GPFN1 by NEDOmoney (40nm, small chip), GPFN2 (12FFC,
full-blown) by PFN internal money.

• 2019 Evaluation of ES chips will be ...

• 2020 “2EF” system (MN-3) will be ready at JAMSTEC ES
site.

MN-Core

MN-3

GRAPE-PFN2 architecture

Overview of GPFN2

• One card: One “module”, One module: four chips in one
package

• One chip: one PCIe interface, DRAM interfaces, four “Level-
2 broadcast blocks” (L2Bs)

• One L2B: eight L1Bs

• One L1B: 16 MABs (Matrix Arithmetic Blocks)

• One MAB: four Processor Elements combined to perform
DP, SP, or HP matrix-vector multiplication.

• One PE can be also used as scalar processor. We added many
special instructions for DL.

• All PE/MAB/L1B/L2B operate on single clock and single
instruction stream (card-level SIMD)

GRAPE-DR
• Many of the technical details of GRAPE-PFN2 is
still undisclosed.

• GRAPE-PFN2 is very much a natural extension of
GRAPE-DR.

• GRAPE-DR project started in 2004 and the ma-
chine completed in 2009.

• GRAPE-DR chip: completed in 2006, TSMC 90nm,
500MHz, 256 DP Gflops, ∼ 4 GF/W.

GRAPE-DR Processor architecture

• Float Mult

• Float add/sub

• Integer ALU

• 32-word registers

• 256-word memory

• communication

port

Chip architecture

B
ro

ad
cast M

em
o

ry

Broadcast
same data to
all PEs

Control Processor

(in FPGA chip)

Memory Write Packet
Instruction

Broadcast Block 0

Result output port

External MemoryHost Computer

SING Chip

Result

Result Reduction and Output
Network

any processor
can write (one
at a time

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

• 32 PEs organized

to “broadcast

block” (BB)

• BB has shared

memory.

• Input data is

broadcasted to all

BBs.

• Outputs from BBs

go through

reduction network

(sum etc)

PE Layout
Black: Local Memory

Red: Reg. File

Orange: FMUL

Green: FADD

Blue: IALU

0.7mm by 0.7mm

800K transistors

0.1W@400MHz

800Mflops/400Mflops

peak (SP/DP)

GRAPE-DR cluster system

(As far as I know) Only processor designed in academia listed in
Top500 in the last 20 years.

Little Green 500, June 2010

#1: GRAPE-DR,
#2: QPACE: German
QCD machine
#9: NVIDIA Fermi

Changes made from GRAPE-DR
• Second layer of on-chip tree network

• Integration of PCIe and DRAM interface

• Addition of MAB

• Much larger memory

• Many other changes in on-cip network

• Design optimized to DNN/CNN
(both inference and learning)

Some numbers
• Number of MABs and PEs: 512 (2048) per chip,
2048 (8192) per module.

• 32.8TF (DP), 132TF (SP) and 524Tops (HP)

• Memory bandwidth: (not yet open)

• Link to the host PC: PCIe

• On-board DRAM: 32GB

Writing software for
GRAPE-DR/MN-Core

• You need to take care of moving data between
DRAM, on-chip network hierarchy, and processor
elements.

• However, that is what you need to think about to
achieve high performance on cache-based processor
anyway.

• To have explicit control on hardware makes the
tuning of the performance rather easy, since the
performance is predictable.

• GRAPE-DR has no hardware for interlock. Num-
ber of instructions= number of cycles.

• Local memory has B/F=8. So it is “straightfor-
ward” to write efficient kernels, once data are in
local memory.

Summary
• We have been working on FDPS, a high-performance
framework for developing particle-based simulation
codes

• Current version (5.0) supports user programs in
Fortran, C, or other languages, and can make use
of GPU and other accelerators efficiently.

• We are also working on processors for HPC (mainly
DL...) with design concept quite different from
that of modern microprocessors.

• So far, the development goes well.

