Gamma-rays from Earth-Size dark-matter halos

Tomoaki Ishiyama, Jun Makino, Toshikazu Ebisuzaki, and Veniamin Berezinsky

Presentation by: JM

Bottom line

- Microhalos (mass \sim earth mass) do survive to the present time.
- Their contribution dominates the annihilation γ -ray flux.
- Nearest halos might be observed as pointlike sources with extremely large proper motions
- Pulsar timing might also detect these halos.

Structure of the talk

- Why microhalos?
- Previous works and their problems
- Our experiment
- Structure of microhalos
- Disruption by tidal fields
- γ -ray all-sky map
- Detectability by Pulsar timing
- Summary

Why microhalos?

- First structures in the Universe
 - $\, {
 m mass} \sim 10^{-6} M_{\odot}$
 - $\operatorname{radius} \sim 100 \ \mathrm{AU}$
- Might have survived
- \bullet If survived, main sources for the annihilation $\gamma\text{-ray}$

Previous works and their problems

Diemand et al. 2005, Nature 433, 389

- cosmological *N*-body simulation
- Express earth-mass halos with 10⁴ particles

Density profile

- Quite similar to so-called NFW profile
- Claim: slope ~ -1.2
- Very low resolution
- Probably completely wrong

Controversy

- If survived to the present, microhalos are primary sources for annihilation γ -ray
- However, they might have been disrupted by
 - merging with similar or somewhat larger halos
 - tidal field of parent halo (or subhalo)
 - encounters with stars

Both the parent halo and stars are very effective, if the density profile of Diemand et al is correct.

Springel et al 2008

You cannot see individual microhals Subhalos are unimportant

Problem with low resolution

- Two-body relaxation: Heat up the central region, resulting in a flat core
- Gravitational softening: resolution limited by softening

Typically, to obtain reliable structure at radius r, one need $\sim 10^4$ particles inside r (of course depends on the crossing time)

Highest-resolution DM simulation

Current best calculation, Springel et al (2008)

Change N by three orders of magnitude

Shows convergence?

Power index of the density slope

Comparison with NFW profile etc

Current status of the DM halo simulation

- For galaxy-size or cluster-size halos, numerical results show central slope decreasing inward.
- no theoretical understanding yet.
- For earth-mass halos, no high-resolution simulation yet.

Difference between earth-mass and galaxy-mass halos

- CDM: Galaxy-sized halos contain many substructures
- Free-streaming cutoff: No substructures

Initial condition

Structure formed

Ishiyama et al., in preparation.

100 times more particles than Diemand et al.

- Top: with free-streaming cutoff
- Bottom: without cutoff

Halos

With cutoff

Without

Structure of microhalos

Solid: with cutoff. quite clear single power

Dashed: without cutoff. Similar to galaxy-sized halos.

Earth-mass microhalos have steep, $\rho \propto r^{-1.5}$ cusp

Meaning of -1.5

Annihilation γ -ray flux diverges as $r \to 0$. Two questions:

- 1. Why -1.5?
- 2. Is there any limit radius?

Why -1.5?

No real clue yet...

Resent cold-collapse simulations show the same -1.5 slope. (Nipoti et al 2006)

Single power is sort of natural

- "Cold" initial condition: no limit in the central density
- No characteristic scale: result should be a power law?

Is there any limit radius?

- "Cold" dark matter still have finite temperature.
- Leuville's theorem maximum phase space density is conserved (or does not increase): $\sim 10^{15} M_{\odot} pc^{-3} (km/s)^{-3}$.

- Core radius: $r_{\rm c} \sim 10^{-5} {\rm pc}$
- Core density: $ho_{
 m c} \sim 2 imes 10^4 {
 m M}_{\odot} {
 m pc}^{-3}$.

Disruption by tidal fields

In previous studies, microhalos were assumed have shallow central slope (~ -1.2). Our high-resolution simulation:

- Central density is very high difficult to disrupt
- γ -ray flux distribution logarithmic in radius heavily stripped halos still retain most of luminocity

Encounters with stars

Structure after encounters

Central parts of Halos do survive very close encounters with stars. Complete disruption requires impact

 $b = 5 imes 10^{-5} ext{pc.}$

 γ -ray all-sky map

Top left: Smooth component due to microhalos Top right: resolvable flux from microhals (within 1pc)

 ${
m Theoretically}, \ r_{
m tidal} \propto b^{8/11}.$

Nearby microhalos

- distance ~ 0.2pc, core size ~ $1AU \rightarrow$ image size ~ 1 arcmin
- Proper motion: $300 \text{km/s}, 0.2 \text{ pc} \rightarrow \sim 0.2 \text{deg/y}$
- total flux: $\sim 10^6$ of the total galactic flux
- 10-100 times blighter than average background

Detectability by Pulsar timing

Encounter with Pulsars causes variation in the time of arrival.

$$\Delta T = 40 \left(rac{R}{5000 {
m AU}}
ight)^{-2} \left(rac{M}{10^{-6} M_{\odot}}
ight) \left(rac{t}{10 {
m yr}}
ight)^2 {
m ns.}$$

Change in the relative position should show up as the residual of TOA.

Current PPTA timing accuracy: 100ns

Many MSPs are in the direction of GC: High DM density.

PPTA might find microhalo in 10 years.

Summary

- Microhalos (mass \sim earth mass) do survive to the present time.
- Their contribution dominates the annihilation γ -ray flux.
- Nearest halos might be observed as pointlike sources with extremely large proper motions
- Pulsar timing might also detect these halos.