Evolution of SMBH-SMBH and SMBH-IMBH Binaries: Effect of Large Mass Ratio

Jun Makino
Center for Computational Astrophysics
and
Division Theoretical Astronomy
National Astronomical Observatory of Japan

Yoko Funato
University of Tokyo

Tatsushi Matsubayashi
Communication Science Laboratories, NTT
Main points

If we consider stellar dynamics only (no gas),

- SMBH-SMBH binary would not merge
- SMBH-IMBH binary (or MBH binary with large mass ratio) do merge
Talk structure

1. SMBH-SMBH binary
 ● Summary recent results

2. SMBH-IMBH binary
 ● Why we consider SMBH-IMBH binary
 ● Simulation result

3. Summary
SMBH-SMBH binary

Many more talks on this subject...

- Formed by merger of two galaxies with SMBHs
- “Last parsec problem”
Last parsec problem

- (If there is not much gas) BHB evolves (hardens) through interaction with nearby stars.
- As it hardens, it becomes more compact and number of stars that can interact with BHB becomes smaller.
- At some point, BHB would kick out all stars it can interact (loss-cone depletion), and stars will be only slowly supplied through two-body relaxation.
- Orbital evolution becomes very slow.

This problem has been known for many years (e.g., Begelman, Blandford and Rees 1980).
\textit{N}-body simulations on loss-cone depletion

Theoretical prediction: growth timescale \sim relaxation time $\sim N$ (number of particles)

- Before 2003 — Total Confusion
- After 2003 — Begin to converge (but...)
Before 2003

- JM 1997
- Quinlan 1997
- Milosavljević & Merritt 2001 (also 2003)
- Chatterjee, Hernquist & Loeb 2003

Results are not quite consistent with each other or with the loss-cone argument.
Not consistent with thermal relaxation argument
Quinlan 1997

N up to 200K (One of the curves in "N=100K" panel is for $N=200K$)

Hardening rate independent of N for $N > 100K$
Milosavljević & Merritt 2001

N up to 32k

Hardening rate independent of N

Argued that they could not see N dependence because N was too small (quite reasonable).
The state of the art in 2003

No agreement at all...

- $N \leq 256K$
- No agreement between different people.
- No result consistent with the loss cone depletion argument.

“numerical N-body experiments are not well suited to probe these mechanisms over long times due to spurious relaxation.”

(Milosavljić and Merritt 2003)
GRAPE-6

- Special-purpose computer for Gravitational N-body problem
- Completed in 2002
- 32Gflops, 10W/chip
- Largest configuration 64 Tflops (2048 chips)
- Many copies have been built and used at more than 30 institutes
- Made direct simulations with $\geq 10^6$ particles practical
Some of the largest GRAPE-6 setups:

- Tokyo (64TF)
- Rochester (4TF)
- Heidelberg (4TF)
- Tsukuba (8+30TF)
GRAPE-DR — Next generation

5-year grant FY2004-2008, 2-Petaflops peak
First sample chip and board arrived May 2006
Currently being tested (no serious error found yet)
New simulations

- JM and Funato 2004
- Berczik, Merritt, and Spurzem 2005
Hardening rate β depends on N.

If we write $\beta \propto N^{-\gamma}$, γ approaching to 1 for late phase

Not inconsistent with asymptotic value being 1.
N up to 0.4M
Simulation significantly longer than JM and F 2004.

N dependence
$\sim N^{0.8} \ (M_{bh} = 0.02)$
$\sim N^{0.33??}$
$(M_{bh} = 0.005)$
Summary of BHB N-body simulations

- N much larger than old simulations
- Duration also longer
- Growth rate shows clear dependence on N
- Results not converged yet...
- “Last parsec problem” is there.
SMBH-IMBH binary

- IMBHs might exist in some young and compact clusters (Matsumoto et al. 2001, Kaaret et al. 2001)
- They might exist near Galactic center (IRS13E, Maillard et al. 2004)

Much controversy on both topics...
Evolution of SMBH-IMBH binary

SMBH potential dominates over background.

- Scaled-down version of SMBH binary?
- Any effect of large mass ratio?
Simulation

- Bahcall-Wolf cusp around SMBH
- SMBH $3 \times 10^6 M_{\odot}$
- IMBH $3 \times 10^3 M_{\odot}$
- 1 length unit ~ 1pc, 1 time unit ~ 4600 year
- Lowest star mass $\sim 3 M_{\odot}$
- IMBH placed at 0.1pc (runs A) or 0.01pc (runs B)
IMBH orbital evolution (runs A)

Slows down at late phase.

Not much dependence on N

(A1-A4 are for different N)
IMBH orbital evolution (runs B)

IMBH placed at 0.01pc
Field star mass smaller than that in runs A

Loss-cone depletion effect clearly visible
Eccentricity grows quickly after separation. Evolution stalled. Different from SMBH-SMBH binary.
Gravitational Wave timescale

Can become very short
($<< 10^6 \text{yrs}$)
Why does eccentricity grow?

Simple explanation:

There are practically no stars within the IMBH orbit.

↓

If the IMBH interacts with other stars, the interaction most likely occurs at the apocenter of IMBH orbit.

↓

Therefore the IMBH loses angular momentum more efficiently.
Change of L in one orbit

Averaged over multiple orbits

M: mean(?)

anomaly, 180: apocenter

Spikes due to two stars strongly bound to SMBH

IMBH loses L around and after apocenter
Why SMBH binaries do not become eccentric?

- In order to interact with IMBH, field stars need to come close to IMBH.
- For SMBH-SMBH binary, anywhere with distance order of BH separation is OK.

\[t_{interaction} \begin{cases} \ll t_{orbit} & \text{(IMBH)} \\ \sim t_{orbit} & \text{(SMBH)} \end{cases} \]

Mass ratio makes difference
Summary

- SMBH binaries would not merge if there is not much gas
- SMBH-IMBH binaries do merge, even if there is no gas
- Main difference: eccentricity of SMBH-IMBH binary increases, while that of SMBH-SMBH binary does not
Some comments

- N-body simulation results are in many cases over-interpreted.
- Larger and more reliable simulations do help resolving fundamental issues.
N-body simulation

Portegies Zwart et al 2005

- 64K stars, Salpeter IMF (lower cutoff: $0.2M_\odot$)
- 2pc from GC, circular orbit
- Roche-lobe filling King model ($W_c = 9$)
Result
Result

- Cluster at 2pc, mass $10^4 M_\odot$: DF timescale≈a few Myrs
- Cluster at 5-10 pc must be more massive
Orbital evolution of cluster with DF

Fujii et al. 2006: Satellite galaxy N-body simulation

In full-nbody simulation, satellite falls faster.
Why?

- Satellite gives angular momentum to escaped stars
- Escaped stars, while remaining close to the satellite, enhance the dynamical friction
Circular orbit?

We do not know how young clusters are formed

Not much reason to assume a circular orbit

If initially in eccentric orbit, DF timescale can be much shorter