
Resent developments of
particle-based methods for CFD, or

can we get out of the morass?

Jun Makino
Particle Simulator Research Team and Co-design team,

Exascale computing project, AICS

Oct 30, 2014 Hokkaido Univ.



Talk Structure

• SPH and its problems

• Contact discontinuity

• “Density-Independent” formulation

• Pseudo-Density formulation

• Weighted-Particle (or normalized weight) approach

• Weak form?

• Summary

• Something not so hopeless (if we have some time
left)



SPH and its problems

Advantages of particle-based method for fluid

• Naturally adaptive (particles moves to where the
mass is there)

• Naturally gives Lagrange picture. Useful for low-
temperature, high-speed objects

• Parallelization fairly easy

However, there are quite a few problems...



An incomplete list of problems of
SPH

• Known practical problems

– requires artificial viscosity, cannot easily be used
with shock-capturing schemes (I’ll not discuss
this issue today)

– cannot handle discontinuities well (contact dis-
continuity and free surface)

– does something strange to shear flow (most no-
tably Keplerian disk — the Imaeda problem

– and more...

• Known theoretical problems

– lacks “consistency” — does not converges to the
original differential equation in the limit of
h → 0

– I do not think you need more problems here...



SPH and Contact Discontinuity, KH
instability

Agertz et al (MN 2007, 380, 963)

• Kelvin-Helmholtz Instability is not correctly han-
dled with SPH

• Something very bad is occuring at the boundary
of two fluids.

• Is SPH usable?



How different? (1)

SPH suppress KHI



How different? (2)

Strange-looking gap of particles at the two-fluid bound-
ary.



Why does this happen?

Fundamental problem with SPH approximation

Density estimate

ρ(x) =
∑
j
mjW (x− xj), (1)

Gradient of a quantity f

⟨∇f⟩(x) ∼ ∑
j
mj

f(xj)

ρ(xj)
∇W (x− xj). (2)

ρ must be smooth and differentiable

Not satisfied at the contact discontinuity



Solution?
“Fundamental” reason

Smooth estimate of ρ contains O(1) error at CD.

We could solve the problem by smoothing real ρ.

• Let u diffuse (artificial conductivity)

• Use density which is continuous at CD.

Sort of working, but not a “true” solution.



Saitoh and Makino 2013: Basic idea

• In SPH, we use m/ρ as “volume element” for nu-
merical integration over smoothing kernel

⟨f⟩(x) =
∑
j

mjf(xj)

ρ(xj)
W (x− xj). (3)

• We can use other forms of the volume element and
derive a consistent set of SPH equations.



Density-Independent SPH

Use the density of the internal energy, instead of mass
density, to calculate the volume element. Let U the
internal energy of particle, and q its density. We have:

q =
∑
j
UjW (x− xj). (4)

We can derive the SPH equation of motion:

miv̇i = −∑
j
(γ − 1)UiUj

 1

qi
+

1

qj

∇W (xi − xj). (5)

• RHS does not depend on mass – DISPH

• This form is symmetric (between i and j particles)

• Actual form same as Ritchie and Thomas 2001



Examples

Standard SPH1

New SPH1

Standard SPH2

New SPH2

file:/home/makino/papers/Takayuki_Saitoh/movies/sfssph64uni.mp4
file:/home/makino/papers/Takayuki_Saitoh/movies/sfsmsph64uni.mp4
file:/home/makino/papers/Takayuki_Saitoh/movies/khssph512.mp4
file:/home/makino/papers/Takayuki_Saitoh/movies/khsmsph512.mp4


Is this the ultimate solution?

• Certainly not.

• Not well behaved at very strong shocks

• Breaks down at liquid surface (near-zero pressure)

• Pressure is continuous, but not always (or almost
always not) differentiable at CD. Thus, the esti-
mate for pressure gradient can still contain very
large error



Somewhat better treatment for
strong shocks

We can use, instead of p, an arbitrary function
of p to obtain the volume element. Assume y is
a monotonic and differentiable function of p, and
Let Z = yV , where V is volume.
After some mathematics we have:
Energy equation:

U̇i =
∑
j

piZiZj

yiyj
(vi − vj)∇W (xi − xj). (6)

Equation of motion:

miv̇i = −∑
j

ZiZj

yiyj
(pi + pj)∇W (xi − xj). (7)



How can we calculate y and Z?

What we know is the internal energy U (or entropy
if you like that).

For given U , Z is a function of y, through EOS.
Therefore

y =
∑
j
ZjW (x− xj). (8)

gives implicit equation for y and Z, which we can
solve with (under-) relaxation method.

This method works better than the original DISPH



An even better volume element?
One way to define the “volume” of a particle, Vi, in
the context of SPH is to use the following implicit
equation:

∑
j
VjW (xi − xj) = 1. (9)

Equation of motion:

miv̇i = −∑
j
ViVj(pi + pj)∇W (xi − xj). (10)

Time evolution of Vi:

V̇i = −Vi
∑
j
Vj(vi − vj)∇W (xi − xj). (11)

Eq. (12) is implicit, but Eq. (11) is explicit. We do
not need to solve the implicit equation during the time
integration.
Doesn’t this sound good?



Does this actually work?

Short answer — NO

Why not?

This equation

∑
j
VjW (xi − xj) = 1. (12)

is ill-conditioned, if the Fourier transform of W con-
tains any zero.

Proof: Wave of that wavenumber gives zero to LHS.

One could use kernels that does not contain zeros, but
if the distribution of particles is irregular, the resulted
equation is still ill-conditioned.



A practical solution for this problem

• Introduce a dummy quantity Z and its density y.
Here y is not a function of p

• Let Z and y evolve in the same way as the mass
and mass density, but add artificial diffusion term.

• We can guarantee that y is smooth everywhere,
without introducing any artificial diffusion to phys-
ical quantities, unlike the artificial conductivity

• “Smoothed Pseudo-Density” SPH, or SPSPH

To my big surprize, this scheme actually works ex-

tremely well.



So, now, have we finally got the
ultimate solution?

• Well, we thought so.

• However, as we mentioned some time ago, the dis-
continuity of pressure gradient still is still prob-
lematic.



Thought experiment: air on water
"Real" pressure

Smoothed pressure

• DISPH assumes the

pressure and pressure

gradient are continuous

• SPSPH just smooths

pressure

• In both cases, large error

appears at CD



What do you do with grid schemes?

• The honest (or the only believable) approach: track
the boundary.

• Place constraint to the value of the pressure at CD.
Use the difference schemes which do not cross CD.

Can we do something similar with SPH? Sounds un-
likely...



Maybe we should forget about SPH?

• There are many ways to express fluid by particles

• SPH is just one of them. There are several new
methods which might be better

• In particular, most of new methods are at least
consistent, and can be extended to handle discon-
tinuity.



Inconsistency of SPH

Wemean, by “consistency”, that the numerical scheme
converges to the original differential equation in the
limit of h → 0.
A necessary condition for the consistency: The esti-
mate for the gradient converges to the true gradient.
SPH gradient estimator

⟨∇f⟩(x) ∼ ∑
j
mj

f(xj)

ρ(xj)
∇W (x− xj). (13)

can always contain O(1) error, unless we do not take
the limit of the infinite number of neighbors



Can we construct a consistent
gradient estimator?

Yes, but

• We need a completely different mathematical frame-
work

• Some of good properties (or what we believe so)
might be lost

Or not?



Hopkins 2014
Or Gaburov and Nitadori 2011, or Lanson and Vila
2008a, 2008b
Use the following volume element for particle i, at any
position:

ψi(x) =
1

ω(x)
W (x − xi, h(x)) (14)

ω(x) =
∑
j
W (x − xj, h(x)) (15)

With these equations, the estimate of a function f at
position x is

< f >=
∑
i
f(xi)ψi(x) (16)

Important property: ∑
i
ψi(x) = 1 (17)



Consistency

The property: ∑
i
ψi(x) = 1 (18)

gives the consistency.

At least, < f > (xi+ δx) converges to f(xi), when we
let both h and average distance to near neighbors in
the same way.



Hopkins 2014 — continued

• The way H14 derives the discretized equation is
quite different from the standard way to derive it
through FEM-like Galerkin method.

• In the Galerkin method, the weak form is con-
structed, using the “shape function” ψi(x) (and its
spatial derivative) as the test function.

• With the weak form, we do not have to obtain the
spatial derivative of the solution, since we elimi-
nate it through partial integration.

• In Hopkins 2014, the second-order-accurate spatial
derivative operator is applied to the solution itself,
effectively going back to the strong form.



What is achieved by H14?

Achieved:

• Consistency

• “reduced” particle noise (not eliminated)

Not achieved:

• Sound treatment of free surface or CD

• Solution to the “Imaeda” problem



Imaeda problem

• Particle distribution of

SPH: not completely

regular

• If one applies shear

or differential rotation,

one eventually see Pois-

son noise.

• Something worse can

appear in the interme-

diate stage
Zero-pressure fluid cannot be solved by a fully-

Lagrangean scheme



How about more usual Galerkin
method?

Consider EFGM (Element-free Galerkin Method)

Some basics:

• Assume that points in space x have the values of
some function u

• Use local polynomial basis function
(1, x, y, x2, xy, y2, x3, ...)

• Conceptually, for any point in space, construct the
“approximation” by the weighted least square fit-
ting of the polynomial basis, with the weight func-
tion with compact support.

• The shape function for point i is implicitly defined
as the weight which appear in the above approxi-
mation



How about more usual Galerkin
method?

Consider EFGM (Element-free Galerkin Method)

Some basics:

• Assume that points in space x have the values of
some function u

• Use local polynomial basis function
(1, x, y, x2, xy, y2, x3, ...)

• Conceptually, for any point in space, construct the
“approximation” by the weighted least square fit-
ting of the polynomial basis, with the weight func-
tion with compact support.

• The shape function for point i is implicitly defined
as the weight which appear in the above approxi-
mation

Er, sorry, what is “shape function”?



Weak form and Galerkin Method
Assume we want to solve (for simplicity, static equa-
tion)

Df(x) = 0 (19)

Where D is some differential operator. The weak form
is: ∫

ϕ(x)Df(x)dx = 0 (20)

Where ϕ(x) an arbitrary test function.

With Galerkin Method, we replace ϕ(x) with some
basis set of functions {ϕi(x)}, and solution f by

f ∼ ∑
i
fiϕi(x) (21)

If the basis set has N basis functions, we end up with
N equation.
For whatever reason, FEM people calls the basis func-
tion (or part of it) “shape function”



Usual Finite-Element method
Example of the basis set in 1D : linear polylines

Higher-order basis set can be constructed by higher-
order fitting polynomials.

Advantage of the weak form:

• We do not need to estimate the derivatives of f
itself, since we can eliminate it by partial integra-
tion

• The only thing we need is the derivatives of the
basis

In the case of EFGM, the basis is defined in a compli-
cated, but still computable, way



Potential advantages of EFGM

• High-order, consistent schemes can be constructed

• Using discontinuous shape functions, CD and free
surface can be treated also in a consistent way

• Mathematics is straightforward.

Sounds great, but,



Why I do not like EFGM

Even when we use explicit time stepping, just to

obtain the time derivative, we need to solve implicit

equation

If this is the only way to go...



Summary

• SPH has too many problems

• We spend some time trying to fix them

• We did fix some of them, but not all

• Second-order Galerkin-like method seems to work
reasonably well, for some cases

• EFGM might work better, but...


