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GRAPE-DR

• Accelerator for HPC

• Development: FY2004-2008

(U-Tokyo+NAOJ+...)

I moved from UT to NAOJ in 2006 and to TiTech in 2011

• “Follow-up” for GRAPE (GRAvity PipE),

special-purpose computer for gravitational

many-body problems

• New architecture — wider application range than

previous GRAPEs



Basic concept of GRAPE

• With N -body simulation, almost all calculation goes to the
calculation of particle-particle interaction.

• This is true even for schemes like Barnes-Hut treecode or
FMM.

• A simple hardware which calculates the particle-particle
interaction can accelerate overall calculation.

• Original Idea: Chikada (1988)

Host
Computer

GRAPE

Time integration etc. Interaction calculation



Chikada’s idea (1988)

• Hardwired pipeline for force calculation (similar to Delft
DMDP)

• Hybrid Architecture (things other than force calculation
done elsewhere)



GRAPE-1 to GRAPE-6

GRAPE-1: 1989, 308Mflops

GRAPE-4: 1995, 1.08Tflops

GRAPE-6: 2002, 64Tflops



From GRAPE-6 to GRAPE-DR

Chip development cost has become too high.

Year Machine Chip initial cost process

1992 GRAPE-4 200K$ 1µm

1997 GRAPE-6 1M$ 250nm

2004 GRAPE-DR 4M$ 90nm

2011? GDR2? > 10M$ 40nm?



How to deal with high initial cost?
Several options:

• Forget about making hardware, use x86 or GPU

• Use FPGA

• Develop hardware with wider range of application

— our decision

– an SIMD processor chip with very large

number of processing cores (512)

– simple on-chip network (broadcast/reduction

tree)

– particle-particle interaction, dense matrix

operation, and other computationally

expensive applications



GRAPE-DR Processor architecture
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Chip architecture
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• 32 PEs organized

to “broadcast

block” (BB)

• BB has shared

memory.

• Input data is

broadcasted to all

BBs.

• Outputs from BBs

go through

reduction network

(sum etc)



PE Layout

Black: Local Memory

Red: Reg. File

Orange: FMUL

Green: FADD

Blue: IALU

0.7mm by 0.7mm

800K transistors

0.1W@400MHz

800Mflops/400Mflops

peak (SP/DP)



Processor board

PCIe x16 (Gen 1) interface

Altera Arria GX as DRAM

controller/communication

interface

• Around 200-250W

power consumption

• 819Gflops DP peak

(400MHz clock)

• Available from K&F

Computing Research

(www.kfcr.jp)



Processor board
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4 FPGAs are connected in a bidirectional ring (used

for broadcast/reduction)



Performance for Dense matrix
operations

Accelerators can make DGEMM (matrix-matrix

multiplication) fast.

Two practical problems

• The actual efficiency of DGEMM

– kernel efficiecy

– communication/startup overhead

• Overall efficiency

– Operations other than DGEMM

(Amdahl’s law)



DGEMM implementation

Calculate: C → C + A × B, conceptually we do:

1. Store B to on-board memory of GRAPE-DR

2. Load (part of) A to on-chip memory

3. load b (one vector of B) to registers of

4. calculate m = A × b

5. output m (directly from register to PCIe

interface)

Steps 3-5 are done concurrently. In addition,

addition (C → C + M) is done on host CPU, also

concurrently



Details:

• Each processing core stores 32 × 8 matrix and

length 32 vectors

• Summation of 16 partial products on different

cores is done by hardware adder tree, and thus no

additional overhead

• Further summation of 4 results from 4 chips is

also done in adders in FPGAs



Calculation timechart
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FPGA Store B to DRAM Send B to chip
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• Transfers of A and B from host are not hidden

• Everything else is done concurrently with

calculation

• We made transfer of A hidden, but X58 chipset

became unstable...



DGEMM performance

M=N, K=2048:

722 Gflops (88%

peak)

N=K=2048, 490

Gflops

FASTEST

single-card

performance on

the planet.

Fermi: 300Gflops
(60% peak)
AMD Cypress:
470Gflops (87% peak)



LU-decomposition tuning

Almost every previously known techniques

• Use large block

(NB=2048)

• right-looking form

• TRSM converted to

GEMM

Problem: row swap is

very slow – stride ac-

cess

P
iv

ot
 s
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rc

h Row swap



Accelerate row-swapping

• Use row-major order to make row swapping fast

• Transpose matrix during recursive column

decomposition to make pivot search and narrow

band matrix operation fast

Some other tunings, such as

• Use recursive scheme for TRSM

(calculation of L−1)



LU-decomposition performance

Speed in Gflops as

function of Matrix

size

Top: GRAPE-DR

Bottom: host CPU

480 Gflops (58% of

theoretical peak) for

N=50K

x11 speedup over host

CPU



HPL (parallel LU)

• Everything done for single-node

LU-decomposition

• Both column- and row-wise communication are

hidden

• TRSM further modified: calculate LT −1 instead

of T −1U

• x2 performance compared to HPL 1.04a



HPL performance

Date N # Nodes Speed Green500

Efficiency

Jun 2010 240K 64 24TF #1

50% (Little)

Nov 2010 432K 81 37.4TF #2

56%



Comparison with other works

(From Nov 10 Top 500 list)

Accelerator CPU Performance Acceleration

/System /Clock /Efficiency over host

Fermi Xeon 6c 2.566PF 2.83

Tianhe-1A 2.93GHz 54.4%

Fermi Xeon 6c 1.192PF 6.13

Tsubame 2.0 2.93(3.19?) GHz 53.5%

GRAPE-DR Core i7 4c 37.4TF 10.6

3GHz 53.2%

Similar efficiency with much higher acceleration

ratio.



Dark side of tuning...

• X58 DMA performance seems to be limited to

6.4GB/s (sum of upstream and downstream,

theoretical limit is 19.2GB/s)

• It starts to drop data silently when busy.

– PIO write

– DMA write

Workaround we used:

• Do not use PIOW

• Do not use DMA read and write concurrently



Similarity and Difference with GPUs

GRAPE-DR GPU (Fermi)

SIMD Yes Yes

Design rule 90nm 40nm

# FPUs 512 448

Memory bandwidth ∼ 5GB/s > 100GB/s

# transistors 400M 3G

Peak DP performance 205GF 515 Gflops

Power consumption 50W 250W

Performance per watt 4.0GF/W 2.1GF/W

DGEMM Efficiency ∼ 90% ∼ 60%



Similarity and Difference with GPUs

• Both GRAPE-DR and GPUs achieved very high

performance (and performance per watt) using

SIMD many-core architecture

• The design of GRAPE-DR is much more

extreme, with 1/10 transistors per FPU.

• Part of the reason of this difference is the limited

memory bandwidth.

• Reduction in transistor count resulted in high

performance/W.



Summary

• GRAPE-DR is an SIMD accelerator for scientific

computing

• With 90nm technology, one GRAPE-DR chip

integrates 512 cores and provides 205Gflops

(Double precision)

• In our DGEMM implementation, all data

transfers, except the transfer of input matrices

from host to GRAPE-DR card, are hidden.

• 4-chip card DGEMM performance 722 Gflops,

LU decomposition ∼ 500Gflops

• Accelerators require new algorithms, not just

porting and tuning



Detailed breakdown of calculation
time
Nswap=0 cpsec = 184.784 wsec=108.456 488.994 Gflops
swaprows time= 5.09831e+09 ops/cycle=0.181402
scalerow time= 1.3279e+08 ops/cycle=6.9647
trans rtoc time= 3.79496e+09 ops/cycle=0.243703
trans ctor time= 2.42686e+09 ops/cycle=0.381087
trans mmul time= 2.74357e+09 ops/cycle=5.05642
tr nr cdec time= 3.68971e+09 ops/cycle=0.250655
trans vvmul time= 7.16809e+08 ops/cycle=1.29022
trans findp time= 2.97246e+09 ops/cycle=0.311138
solve tri u time= 5.95504e+09 ops/cycle=7.22212e-06
solve tri time= 4.00307e+10 ops/cycle=94.6313
trans mmul8 time= 9.15249e+08 ops/cycle=8.08387
trans mmul4 time= 4.9365e+08 ops/cycle=7.49393
trans mmul2 time= 1.33296e+09 ops/cycle=1.38765



Detailed breakdown of calculation
time (cont’d)
DGEMM2K time= 2.77404e+11 ops/cycle=184.353
DGEMM1K time= 1.75294e+10 ops/cycle=54.0258
DGEMM512 time= 1.64471e+10 ops/cycle=28.7905
DGEMMrest time= 3.16284e+10 ops/cycle=14.9713
col dec t time= 1.26994e+10 ops/cycle=2.33042
Total time= 3.65573e+11 ops/cycle=145.072



Next-Generation GRAPE

Question:

Any reason to continue hardware development?

• GPUs are fast, and getting faster

• FPGAs are also growing in size and speed

• Custom ASICs practically impossible to make



Next-Generation GRAPE

Question:

Any reason to continue hardware development?

• GPUs are fast, and getting faster

• FPGAs are also growing in size and speed

• Custom ASICs practically impossible to make

Answer?

• GPU speed improvement might have slowed down

• FPGAs are becoming far too expensive

• Power consumption might become most critical

• Somewhat cheaper way to make custom chips



GPU speed improvement slowing
down?

Clear “slowing down”

after 2006 (after G80)

Reason: shift to more
general-purpose
architecture

Discrete GPU market is
eaten up by unified
chipsets and unified
CPU+GPU

But: HPC market is not
large enough to support
complex chip development



FPGA

“Field Programmable Gate Array”

• “Programmable” hardware

• “Future of computing” for the last two decades....

• Telecommunication market needs: large and fast

chips (very expensive)



Power Consumption

1kW · 1 year ∼ 1000 USD

You (or your institute) might be paying more money

for electricity than for hardware.

Special-purpose hardware is quite energy efficient.

Chip Design rule Gflops/W

GRAPE-7(FPGA) 65nm > 20

GRAPE-DR 90nm 4

GRAPE-6 250nm 1.5

Tesla C2050 40nm < 2

Opteron 6128 45nm < 1.2



Structured ASIC

• Something between FPGA and ASIC

• eASIC: 90nm (Fujitsu) and 45nm (Chartered)

products.

• Compared to FPGA:

– 3x size

– 1/10 chip unit price

– non-zero initial cost

• Compared to ASIC:

– 1/10 size and 1/2 clock speed

– 1/3 chip unit price

– 1/100 initial cost (> 10M USD vs ∼ 100K)



GRAPEs with eASIC

• Completed an experimental design of a

programmable processor for quadruple-precision

arithmetic. 6PEs in nominal 2.5Mgates.

• Started designing low-accuracy GRAPE hardware

with 7.4Mgates chip.

Summary of planned specs:

• around 8-bit relative precision

• 100-200 pipelines, 300-400 MHz, 2-5Tflops/chip

• small power consumption: single PCIe card can

house 4 chips (10 Tflops, 50W in total)



Will this be competitive?

Rule of thumb for a special-purpose computer

project:

Price-performance goal should be more than 100

times better than that of a PC available when you

start the project.

— x 10 for 5 year development time

— x 10 for 5 year lifetime

Compared to CPU: Okay

Compared to GPU: ??? (Okay for electricity)



Will this be competitive?

Rule of thumb for a special-purpose computer

project:

Price-performance goal should be more than 100

times better than that of a PC available when you

start the project.

— x 10 for 5 year development time

— x 10 for 5 year lifetime

Compared to CPU: Okay

Compared to GPU: ??? (Okay for electricity)

Will GPUs exist 10 years from now?


