
FDPS: Framework for Developing
Particle Simulator

Jun Makino
Kobe University

RIKEN Advanced Institute for Computational Science (AICS)



Talk plan
1. What we (don’t) want to do when writing particle-

based simulation codes.

2. What should be done?

3. Design of FDPS

4. Current status

5. Issues on heterogeneous many-core systems

6. Performance of FDPS on TaihuLight (and PEZY-
SC2)



What we want to do
• We want to try large

simulations.

• Computers (or the

network of comput-

ers...) are fast enough

to handle hundreds of

millions of particles,

for many problems.

• In many fields, largest

simulations still em-

ploy 1M or less par-

ticles....
(example: Canup+ 2013)



What we want to do
More precisely, what we do not want to do

• We do not want to write parallel programs using
MPI.

• We do not want to modify data structure and loop
structure to make use of data caches.

• We do not want to do complicated optimizations
to hide interprocessor communications.

• We do not want to write tricky codes to let com-
pilers make use of SIMD instruction sets.

• We do not want to do machine-specific optimiza-
tions or write codes using machine-specific lan-
guages (C*d*).



But what we can do?
Traditional ideas:

• Hope that parallelizing compilers will solve all prob-
lems.

• Hope that big shared memory machines will solve
all problems.

• Hope that parallel languages (with some help of
compilers) will solve all problems.

But...

• These hopes have never been......

• Reason: low performance. Only approaches which
achieve the best performance on the most inexpen-
sive systems have survived.



Then what can we really do?
1. Accept the reality and write MPI programs and do

optimization
Limitation: If you are an ordinary person the achieved
performance will be low, and yet it will take more
than infinite time to develop and debug programs.
Your researcher life is likely to finish before you
finish programming.

2. Let someone else do the work
Limitation: If that someone else is an ordinary per-
son the achieved performance will be low, and yet
it will take more than infinite time and money.

• Neither is ideal

• We do need “non-ordinary people”.



Products of “non-ordinary people”
Within Astrophysics

• pkdgrav (Quinn et al. 1997)

• Gadget (Springel et al. 2001)

• GreeM (Ishiyama et al. 2009)

• REBOUND (Rein and Liu 2012)



Problems with “non-ordinary
people”

• If you can secure non-ordinary people there might
be some hope.

• But they are very limited resource.

If we can apply “non-ordinary people” to many dif-

ferent problems, it will be the solution.



How can we apply “non-ordinary
people” to many different problems?
Our approach:

• Formulate an abstract description of the approach
of “non-ordinary people”, and apply it to many
different problem.

• “Many different” means particle-based simulations
in general.

• Achieve the above by “metaprogramming”

• DRY (Don’t Repeat Yourself) principle.



To be more specific:
Particle-based simulations includes:

• Gravitational many-body simulations

• molecular-dynamics simulations

• CFD using particle methods(SPH, MPS, MLS etc)

• Meshless methods in structure analysis etc (EFGM
etc)

Almost all calculation cost is spent in the evaluation
of interaction between particles and their neighbors
(long-range force can be done using tree, FMM, PME
etc)



To be more specific:
Particle-based simulations includes:

• Gravitational many-body simulations

• molecular-dynamics simulations

• CFD using particle methods(SPH, MPS, MLS etc)

• Meshless methods in structure analysis etc (EFGM
etc)

Almost all calculation cost is spent in the evaluation
of interaction between particles and their neighbors
(long-range force can be done using tree, FMM, PME
etc)

However, calculation time on accelerator-based or
heterogenious systems show different behaviours. I’ll
come back to this issue later.



Our solution
If we can develop a program which can generate a

highly optimized MPI program for

• domain decomposition (with load balance)

• particle migration

• interaction calculation (and necessary communica-
tion)

for a given particle-particle interaction, that will be
the solution.



Design decisions
• API defined in C++

• Users provide

– Particle data class

– Function to calculate particle-particle interac-
tion

Our program generates necessary library functions.
Interaction calculation is done using parallel Barnes-
Hut tree algorithm

• Users write their program using these library func-
tions.

Actual “generation” is done using C++ templates.



Status of the code
Iwasawa+2016 (PASJ 2016, 68, 54+arxive 1601.03138)

• Publicly available

• A single user program can be compiled to single-
core, OpenMP parallel or MPI parallel programs.

• Parallel efficiency is very high

• As of version 3.0 (released 2016) GPUs can be used
and user programs can be in Fortran

Tutorial
FDPS Github: https://github.com/FDPS/FDPS

https://github.com/FDPS/FDPS/raw/master/doc/doc_tutorial_cpp_en.pdf
https://github.com/FDPS/FDPS


Getting FDPS and run samples
> git clone git://github.com/FDPS/FDPS.git
> cd FDPS/sample/c++/nbody
> make
> ./nbody.out

To use OpenMP and/or MPI, change a few lines of
Makefile



Domain decomposition

Each computing node

(MPI process) takes care

of one domain

Recursive Multisection

(JM 2004)

Size of each domain are

adjusted so that the cal-

culation time will be bal-

anced (Ishiyama et al.

2009, 2012)

Works reasonable well for up to 160k processes (so
far the max number of processess we tried)



Sample code with FDPS
1. Particle Class

#include <particle_simulator.hpp> //required
using namespace PS;
class Nbody{ //arbitorary name
public:

F64 mass, eps; //arbitorary name
F64vec pos, vel, acc; //arbitorary name
F64vec getPos() const {return pos;} //required
F64 getCharge() const {return mass;}//required
void copyFromFP(const Nbody &in){ //required

mass = in.mass;
pos = in.pos;
eps = in.eps;

}
void copyFromForce(const Nbody &out) { //required

acc = out.acc;
}



Particle class (2)
void clear() { //required

acc = 0.0;
}
void readAscii(FILE *fp) {//to use FDPS IO

fscanf(fp,
"%lf%lf%lf%lf%lf%lf%lf%lf",
&mass, &eps, &pos.x, &pos.y, &pos.z,
&vel.x, &vel.y, &vel.z);

}
void predict(F64 dt) { //used in user code

vel += (0.5 * dt) * acc;
pos += dt * vel;

}
void correct(F64 dt) { //used in user code

vel += (0.5 * dt) * acc;
}

};



Interaction function
template <class TParticleJ>
void CalcGravity(const FPGrav * ep_i,

const PS::S32 n_ip,
const TParticleJ * ep_j,
const PS::S32 n_jp,
FPGrav * force) {

PS::F64 eps2 = FPGrav::eps * FPGrav::eps;
for(PS::S32 i = 0; i < n_ip; i++){

PS::F64vec xi = ep_i[i].getPos();
PS::F64vec ai = 0.0;
PS::F64 poti = 0.0;



Interaction function
for(PS::S32 j = 0; j < n_jp; j++){

PS::F64vec rij = xi - ep_j[j].getPos();
PS::F64 r3_inv = rij * rij + eps2;
PS::F64 r_inv = 1.0/sqrt(r3_inv);
r3_inv = r_inv * r_inv;
r_inv *= ep_j[j].getCharge();
r3_inv *= r_inv;
ai -= r3_inv * rij;
poti -= r_inv;

}
force[i].acc += ai;
force[i].pot += poti;

}
}



Time integration (user code)

template<class Tpsys>
void predict(Tpsys &p,

const F64 dt) {
S32 n = p.getNumberOfParticleLocal();
for(S32 i = 0; i < n; i++)

p[i].predict(dt);
}

template<class Tpsys>
void correct(Tpsys &p,

const F64 dt) {
S32 n = p.getNumberOfParticleLocal();
for(S32 i = 0; i < n; i++)

p[i].correct(dt);
}



Calling interaction function through
FDPS

template <class TDI, class TPS, class TTFF>
void calcGravAllAndWriteBack(TDI &dinfo,

TPS &ptcl,
TTFF &tree) {

dinfo.decomposeDomainAll(ptcl);
ptcl.exchangeParticle(dinfo);
tree.calcForceAllAndWriteBack

(CalcGravity<Nbody>(),
CalcGravity<SPJMonopole>(),
ptcl, dinfo);

}



Main function
int main(int argc, char *argv[]) {

F32 time = 0.0;
const F32 tend = 10.0;
const F32 dtime = 1.0 / 128.0;
// FDPS initialization
PS::Initialize(argc, argv);
PS::DomainInfo dinfo;
dinfo.initialize();
PS::ParticleSystem<Nbody> ptcl;
ptcl.initialize();
// pass initeraction function to FDPS
PS::TreeForForceLong<Nbody, Nbody,

Nbody>::Monopole grav;
grav.initialize(0);
// read snapshot
ptcl.readParticleAscii(argv[1]);



Main function
// interaction calculation
calcGravAllAndWriteBack(dinfo,

ptcl,
grav);

while(time < tend) {
predict(ptcl, dtime);
calcGravAllAndWriteBack(dinfo,

ptcl,
grav);

correct(ptcl, dtime);
time += dtime;

}
PS::Finalize();
return 0;

}



Remarks
• Multiple particles can be defined (such as dark
matter + gas)

• User-defined interaction function should be opti-
mized to the given architecture for the best per-
formance (for now)

• This program runs fully parallelized with OpenMP
+ MPI.



Example of calculation

Giant Impact calculation

(Hosono et al. 2017,

PASJ 69, 26+)

Figure: 9.9M particles

Up to 2.6B particles tried

on K computer

We need more machine

time to finish large cal-

culation... Moving to

PEZY systems.



Performance examples

10-3

10-2

10-1

100

101

102

102 103 104 105

w
al

l c
lo

ck
 ti

m
e 

pe
r 

tim
es

te
p[

s]

# of cores

total
domain decomposition

exchange particle
grav

100

101

102

103

pe
rf

or
m

an
ce

[T
F

LO
P

S
]

K
XC30

50% of TPP (K)
35% of TPP (XC30) Strong scaling with 550M

particles

Measured on both K

computer and Cray XC30 at

NAOJ

Gravity only, isolated spiral

galaxy

scales up to 100k cores

30-50% of the theoretical

peak performance



Version 2.0
GPGPU and other accelerators

• FDPS Version 1.0: interaction function calculates
forces from one group of particles to one group of
particles (single “interaction list”)

• Version 2.0: interaction function should handle mul-
tiple interaction lists in a single call (to hide large
startup overhead of GPGPUs)



Version 3.0
API to user programs written in Fortran

• “C++ is very difficult to learn/write”

• There are still many Fortran users



Fortran API
• Particle data in Fortran structured data type

• Using Fortran iso c binding functions, make Fortran-
defined class and functions visible from C++ li-
brary functions

• Generate C++ class and member functions from
Fortran source and directives



Particle definition
module user_defined_types

use, intrinsic :: iso_c_binding

use fdps_vector

use fdps_super_particle

!**** Full particle type

type, public, bind(c) :: full_particle !$fdps FP,EPI,EPJ,Force

!$fdps copyFromForce full_particle (pot,pot) (acc,acc)

!$fdps copyFromFP full_particle (id,id) (mass,mass) (eps,eps) (pos,pos)

!$fdps clear id=keep, mass=keep, eps=keep, pos=keep, vel=keep

integer(kind=c_long_long) :: id

real(kind=c_double) mass !$fdps charge

real(kind=c_double) :: eps

type(fdps_f64vec) :: pos !$fdps position

type(fdps_f64vec) :: vel !$fdps velocity

real(kind=c_double) :: pot

type(fdps_f64vec) :: acc

end type full_particle



Version 4.0
• Released on Nov 8, 2017

• Mainly performance enhancement from our expe-
rience on Sunway TaihuLight

• Barnes-Hut tree in cylindrical coordinates for nar-
row ring calculation

• Many other improvements on scalability and/or ef-
ficiency



Performance (and tuning) of FDPS
on TaihuLight (and PEZY-SC2)

• Why did we do that?

• TaihuLight and SC2 — view from the application
side

• FDPS (or N -body simulation) on TaihuLight —
New algorithms introduced

• Achieved performance



Why did we do that?
• Why not?

• TaihuLight and PEZY-SC2 have many things in
common, and they are among the fastest machines.
Their architecture might be tomorrow’s standard.

• We can learn how we should improve FDPS so that
it will be useful on future HPC platforms.



TaihuLight and SC2 — view from
the application side

Good news:

• They are fast — the fastest in the world and in
Japan



TaihuLight and SC2 — view from
the application side

Good news:

• They are fast — the fastest in the world and in
Japan

Not-so-good news:

• Extreme performance ratio between general-purpose
and “special-purpose” cores (effectively much more
than a factor of 100)

• Extremely limited main memory bandwidth (BF ∼
0.0x)

• Even more limited network bandwidth



TaihuLight and SC2 — view from
the application side

Good news:

• They are fast — the fastest in the world and in
Japan

Not-so-good news:

• Extreme performance ratio between general-purpose
and “special-purpose” cores (effectively much more
than a factor of 100)

• Extremely limited main memory bandwidth (BF ∼
0.0x)

• Even more limited network bandwidth

Good for HPL, but...



Jack Dongarra et al. 2014
“HPCG: ONE YEAR LATER”



Well, then, what’s RIGHT?

Should HPC machines be designed to run “real ap-
plication mix”?

What should be the goal of “hardware-software code-
sign”?



The ultimate goal
• Both the hardware and software (or, their combi-
nation) must be “optimal”

• Probably the only meaningful “optimality” in the
post-Moore era is of energy efficiency (energy-for-
the-solution)



Cost of DP mult and off-chip data
move

• PEZY-SC2 achieve 17 Gflops/W. FMA operation
itself would be around 50-60Gflops/W = 20pJ/flop

• Data move with HBM2 would be around 20 GB/s/W=
400pJ/word

• Even with HBM2, a machine with B/F=0.3 would
spend equal power for computing and DRAM ac-
cess (and similar or more for on-chip data move)

• Relative cost of data movement will be higher in
the future



Implication on algorithm/software
development

• We need to “minimize” data move

• In other words, we need to understand the the-
oretical lower limit of data movement necessary
to solve a given problem with a given numerical
scheme.

• However, at present we have no clue on it. We do
not know what is the lower limit. We do not know
how to get there either.

We can learn a lot by trying to use machines with

low B/F and low network bandwidth



What we did on TaihuLigt
Standard Parallel Barnes-Hut tree algorithm on accelerator

• construct load-balanced domain decomposition

• move particles to new home

• construct local tree

• exchange “local essential tree”

• construct global tree

• traverse tree for a group of particles, construct an “interac-
tion list” and let the accelelrator do the actual interaction
calculation. Do this for all groups



Problem with the standard
alogirithm

• On TaihuLight, all steps other than interaction cal-
culation are slow

• They are extremely slown on MPE, but even when
moved to CPEs, they are slow due to the limited
memory bandwidth

• There aresy a number of other issues...



Our current implementation
• Use the “interaction list” for multiple timesteps
(similar to “bookkeeping” or “neighbour list” method

• “semi-dynamic” load balance between CPEs

• manual tuning (in assembly language) of the inter-
action kernels

• Elimination of all-to-all communications through
the introduction of multi-process “superdomains”

• Problem-specific optimizations for planetary ring
calculations



Amount of memory access and
calculation

Memory access:

• Tree physical quantity update: ∼ N

• Force calculation: ∼ 10N

• Time integration (merged with force caculation)

around 300 bytes/particle/timestep

Force calculation:
around 3e4 operations/particle/timestep

B/F 0.01 can be achieved. To use machines with
B/F< 0.01, we need new ideas.



Achieved performance

102

103

102 103 104

pe
rf

or
m

an
ce

[T
flo

ps
]

# of processes

measurement
35% of TP

Nearly 4PF on 1/10 of TaihuLight



Calculation time breakdown

10-2

10-1

100

102 103 104

w
al

l c
lo

ck
 ti

m
e[

s]

# of processes

total
interaction

communication
others



Summary

• Please visit: https://github.com/FDPS/FDPS

• A Framework for Developing parallel Particle Simulation code

• FDPS offers library functions for domain decomposition, par-
ticle exchange, interaction calculation using tree.

• Can be used to implement pure Nbody, SPH, or any particle
simulations with two-body interactions.

• Uses essentially the same algorithm as used in our treecode
implementation on K computer (GreeM, Ishiyama, Nitadori
and JM 2012).

• Improvements for heterogenious manycore systems are ready

• Good weak scaling and performance not far from theoretical
limit on TaihuLight. Hopefully also on PEZY-SC2.


