
Performance of FDPS on Sunway
TaihuLight and Other Modern HPC

Systems

Jun Makino
Kobe University

RIKEN Advanced Institute for Computational Science (AICS)

FDPS team and collaborators
RIKEN AICS
(Particle Simulator
Research Team)
Masaki Iwasawa
Keigo Nitadori
Daisuke Namekata
Kentaro Nomura
Miyuki Tsubouchi
Jun Makino

JAMSTEC
Natsuki Hosono

U. Tokyo
Ataru Tanikawa

Helmholtz Institut
Long Wang

NSC in Wuxi
(Sunway TaihuLight)
Zhao Liu
Haohuan Fu
Guangwen Yang

and many others

Talk plan
1. What we want to do when writing particle-based

simulation codes.

2. What should be done?

3. Design of FDPS

4. Performance

5. Performance on Sunway TaihuLight

What we want to do
• We want to try large

simulations.

• Computers (or the

network of comput-

ers...) are fast enough

to handle hundreds of

millions of particles,

for many problems.

• In many fields, largest

simulations still em-

ploy 1M or less par-

ticles....
(example: Canup+ 2013)

What we want to do
• Write a simple program expressing the numerical
scheme used

• Run it on notebooks, desktops, clusters and large-
scale HPC platform

What we are doing now
• rewrite the entire program using MPI to make use
of multiple nodes.

• apply complicated optimizations to hide interpro-
cessor communications.

• rewrite data structure and loop structure to make
efficient use of data caches.

• rewrite inner loops and data structure to let com-
pilers make use of SIMD instruction sets.

• apply machine-specific optimizations or write codes
using machine-specific languages (C*d*, Open**).

What we hoped 30 years ago
• Hope that parallelizing compilers will solve all prob-
lems.

• Hope that big shared memory machines will solve
all problems.

• Hope that parallel languages (with some help of
compilers) will solve all problems.

But...

• These hopes have never been......

• Reason: low performance. Only approaches which
achieve the best performance on the most inexpen-
sive systems have survived.

Then what can we really do?
1. Accept the reality and write MPI programs and do

optimization
Limitation: If you are an ordinary person the achieved
performance will be low, and yet it will take more
than infinite time to develop and debug programs.
Your researcher life is likely to finish before you
finish programming.

2. Let someone else do the work
Limitation: If that someone else is an ordinary per-
son the achieved performance will be low, and yet
it will take more than infinite time and money.

• Neither is ideal

• We do need “non-ordinary people”.

Products of “non-ordinary people”
Astrophysics

• pkdgrav (Quinn et al. 1997)

• Gadget (Springel et al. 2001)

• GreeM (Ishiyama et al. 2009)

Molecular Dynamics
GROMACS, LAMMPS, NAMD, and several others

Other fields?

Problems with “non-ordinary
people”

• If you can secure non-ordinary people there might
be some hope.

• But they are very limited resources.

• Not enough non-ordinary people to meet the needs
of many application areas.

If we can apply “non-ordinary people” to many dif-

ferent problems, it will be the solution.

How can we apply “non-ordinary
people” to many different problems?
Our approach:

• Formulate an abstract description of the approach
of “non-ordinary people”, and apply it to many
different problem.

• “Many different” means particle-based simulations
in general.

• Achieve the above by “metaprogramming”

• DRY (Don’t Repeat Yourself) principle.

To be more specific:
Particle-based simulations includes:

• Gravitational many-body simulations

• molecular-dynamics simulations

• CFD using particle methods(SPH, MPS, MLS etc)

• Meshless methods in structure analysis etc (EFGM
etc)

Almost all calculation cost is spent in the evaluation
of interaction between particles and their neighbors
(long-range force can be done using tree, FMM, PME
etc)

Our solution
If we can develop a program which can generate a

highly optimized MPI program for

• domain decomposition (with load balance)

• particle migration

• interaction calculation (and necessary communica-
tion)

for a given particle-particle interaction, that will be
the solution.

Design decisions
• API defined in C++

• Users provide

– Particle data class

– Function to calculate particle-particle interac-
tion

Our program generates necessary library functions.
Interaction calculation is done using parallel Barnes-
Hut tree algorithm

• Users write their program using these library func-
tions.

Actual “generation” is done using C++ templates.

Status of the code
Iwasawa+2016 (PASJ 2016, 68, 54+arxive 1601.03138)

• Publicly available

• A single user program can be compiled to single-
core, OpenMP parallel or MPI parallel programs.

• Parallel efficiency is very high

• As of version 3.0 (released 2016) GPUs can be used
and user programs can be in Fortran

• Version 4.0 offers many performance improvements

• 30 — 100 users (estimated) worldwide

Tutorial
FDPS Github: https://github.com/FDPS/FDPS

https://github.com/FDPS/FDPS/raw/master/doc/doc_tutorial_cpp_en.pdf
https://github.com/FDPS/FDPS

Getting FDPS and run samples
> git clone git://github.com/FDPS/FDPS.git
> cd FDPS/sample/c++/nbody
> make
> ./nbody.out

To use OpenMP and/or MPI, change a few lines of
Makefile

Domain decomposition

Each computing node

(MPI process) takes care

of one domain

Recursive Multisection

(JM 2004)

Size of each domain are

adjusted so that the cal-

culation time will be bal-

anced (Ishiyama et al.

2009, 2012)

Works reasonable well for up to 160k processes (so
far the max number of processes we tried)

Sample code with FDPS
1. Particle Class

#include <particle_simulator.hpp> //required
using namespace PS;
class Nbody{ //arbitorary name
public:

F64 mass, eps; //arbitorary name
F64vec pos, vel, acc; //arbitorary name
F64vec getPos() const {return pos;} //required
F64 getCharge() const {return mass;}//required
void copyFromFP(const Nbody &in){ //required

mass = in.mass;
pos = in.pos;
eps = in.eps;

}
void copyFromForce(const Nbody &out) { //required

acc = out.acc;
}

Particle class (2)
void clear() { //required

acc = 0.0;
}
void readAscii(FILE *fp) {//to use FDPS IO

fscanf(fp,
"%lf%lf%lf%lf%lf%lf%lf%lf",
&mass, &eps, &pos.x, &pos.y, &pos.z,
&vel.x, &vel.y, &vel.z);

}
void predict(F64 dt) { //used in user code

vel += (0.5 * dt) * acc;
pos += dt * vel;

}
void correct(F64 dt) { //used in user code

vel += (0.5 * dt) * acc;
}

};

Interaction function
template <class TParticleJ>
void CalcGravity(const FPGrav * ep_i,

const PS::S32 n_ip,
const TParticleJ * ep_j,
const PS::S32 n_jp,
FPGrav * force) {

PS::F64 eps2 = FPGrav::eps * FPGrav::eps;
for(PS::S32 i = 0; i < n_ip; i++){

PS::F64vec xi = ep_i[i].getPos();
PS::F64vec ai = 0.0;
PS::F64 poti = 0.0;

Interaction function
for(PS::S32 j = 0; j < n_jp; j++){

PS::F64vec rij = xi - ep_j[j].getPos();
PS::F64 r3_inv = rij * rij + eps2;
PS::F64 r_inv = 1.0/sqrt(r3_inv);
r3_inv = r_inv * r_inv;
r_inv *= ep_j[j].getCharge();
r3_inv *= r_inv;
ai -= r3_inv * rij;
poti -= r_inv;

}
force[i].acc += ai;
force[i].pot += poti;

}
}

Time integration (user code)

template<class Tpsys>
void predict(Tpsys &p,

const F64 dt) {
S32 n = p.getNumberOfParticleLocal();
for(S32 i = 0; i < n; i++)

p[i].predict(dt);
}

template<class Tpsys>
void correct(Tpsys &p,

const F64 dt) {
S32 n = p.getNumberOfParticleLocal();
for(S32 i = 0; i < n; i++)

p[i].correct(dt);
}

Calling interaction function through
FDPS

template <class TDI, class TPS, class TTFF>
void calcGravAllAndWriteBack(TDI &dinfo,

TPS &ptcl,
TTFF &tree) {

dinfo.decomposeDomainAll(ptcl);
ptcl.exchangeParticle(dinfo);
tree.calcForceAllAndWriteBack

(CalcGravity<Nbody>(),
CalcGravity<SPJMonopole>(),
ptcl, dinfo);

}

Main function
int main(int argc, char *argv[]) {

F32 time = 0.0;
const F32 tend = 10.0;
const F32 dtime = 1.0 / 128.0;
// FDPS initialization
PS::Initialize(argc, argv);
PS::DomainInfo dinfo;
dinfo.initialize();
PS::ParticleSystem<Nbody> ptcl;
ptcl.initialize();
// pass initeraction function to FDPS
PS::TreeForForceLong<Nbody, Nbody,

Nbody>::Monopole grav;
grav.initialize(0);
// read snapshot
ptcl.readParticleAscii(argv[1]);

Main function
// interaction calculation
calcGravAllAndWriteBack(dinfo,

ptcl,
grav);

while(time < tend) {
predict(ptcl, dtime);
calcGravAllAndWriteBack(dinfo,

ptcl,
grav);

correct(ptcl, dtime);
time += dtime;

}
PS::Finalize();
return 0;

}

Remarks
• Multiple particles can be defined (such as dark
matter + gas)

• User-defined interaction function should be opti-
mized to the given architecture for the best per-
formance (for now)

• This program runs fully parallelized with OpenMP
+ MPI.

Example of calculation
Giant Impact calculation

(Hosono et al. 2017,

PASJ 69, 26+)

Figure: 9.9M particles

Up to 2.6B particles tried

on K computer

We need more machine

time to finish large calcu-

lation... Currently PEZY

systems are used. (Sasaki

and Hosono, The As-

trophysical Journal, in

press)

Performance examples

10-3

10-2

10-1

100

101

102

102 103 104 105

w
al

l c
lo

ck
 ti

m
e

pe
r

tim
es

te
p[

s]

of cores

total
domain decomposition

exchange particle
grav

100

101

102

103

pe
rf

or
m

an
ce

[T
F

LO
P

S
]

K
XC30

50% of TPP (K)
35% of TPP (XC30) Strong scaling with 550M

particles

Measured on both K

computer and Cray XC30 at

NAOJ

Gravity only, isolated spiral

galaxy

scales up to 100k cores

30-50% of the theoretical

peak performance

Performance (and tuning) of FDPS
on TaihuLight

• Overview of Sunway TaihuLight

• FDPS (or N -body simulation) on TaihuLight —
New algorithms introduced

• Achieved performance

TaihuLight
• The fastest supercomputer in the world

• Extreme performance ratio between general-purpose
and “special-purpose” cores (effectively much more
than a factor of 100)

• Extremely limited main memory bandwidth (BF ∼
0.03)

• Even more limited network bandwidth

Implication on algorithm/software
development

• We need to “minimize” data move

• In other words, we need to understand the the-
oretical lower limit of data movement necessary
to solve a given problem with a given numerical
scheme.

• However, at present we have no clue on it. We do
not know what is the lower limit. We do not know
how to get there either.

We can learn a lot by trying to use machines with

low B/F and low network bandwidth

What we did on TaihuLight
Standard Parallel Barnes-Hut tree algorithm on accelerator

• construct load-balanced domain decomposition

• move particles to new home

• construct local tree

• exchange “local essential tree”

• construct global tree

• traverse tree for a group of particles, construct an “interac-
tion list” and let the accelerator do the actual interaction
calculation. Do this for all groups

Problem with the standard
algorithm

• On TaihuLight, all steps other than interaction cal-
culation are slow

• They are extremely slow on MPE, but even when
moved to CPEs, they are slow due to the limited
memory bandwidth

• There are a number of other issues...

Our current implementation
• Use the “interaction list” for multiple timesteps
(similar to “bookkeeping” or “pairlist” method

• “semi-dynamic” load balance between CPEs

• manual tuning (in assembly language) of the inter-
action kernels

• Elimination of all-to-all communications through
the introduction of multi-process “superdomains”

• Problem-specific optimizations for planetary ring
calculations

Achieved performance

102

103

102 103 104

pe
rf

or
m

an
ce

[T
flo

ps
]

of processes

measurement
35% of TP

Nearly 4PF on 1/10 of TaihuLight

Calculation time breakdown

10-2

10-1

100

102 103 104

w
al

l c
lo

ck
 ti

m
e[

s]

of processes

total
interaction

communication
others

Summary

• Please visit: https://github.com/FDPS/FDPS

• A Framework for Developing parallel Particle Simulation code

• FDPS offers library functions for domain decomposition, par-
ticle exchange, interaction calculation using tree.

• Can be used to implement pure Nbody, SPH, or any particle
simulations with two-body interactions.

• Uses essentially the same algorithm as used in our treecode
implementation on K computer (GreeM, Ishiyama, Nitadori
and JM 2012).

• Improvements for heterogeneous manycore systems are ready

• Good weak scaling and performance not far from theoretical
limit on TaihuLight.

Amount of memory access and
calculation

Memory access:

• Tree physical quantity update: ∼ N

• Force calculation: ∼ 10N

• Time integration (merged with force calculation)

around 300 bytes/particle/timestep

Force calculation:
around 3e4 operations/particle/timestep

B/F 0.01 can be achieved. To use machines with
B/F< 0.01, we need new ideas.

