Performance evaluation and tuning of GRAPE-6
— towards 40 “real” Tflops

Junichiro Makino
Department of Astronomy,
School of Science,
University of Tokyo,
Tokyo 113-0033, Japan

makino@astron.s.u-
tokyo.ac.jp

ABSTRACT

In this paper, we describe the performance characteristics
of GRAPE-6, the sixth-generation special-purpose computer
for gravitational many-body problems. GRAPE-6 consists
of 2048 custom pipeline chips, each of which integrates six
pipeline processors specialized for the calculation of gravita-
tional interaction between particles. The GRAPE hardware
performs the evaluation of the interaction. The frontend
processors perform all other operations, such as the time in-
tegration of the orbits of particles, I/O, on-the-fly analysis
etc. The theoretical peak speed of GRAPE-6 is 63.4 Tflops.
We present the result of benchmark runs, and discuss the
performance characteristics. We also present the measured
performance for a few real scientific applications. The best
performance so far achieved with real applications is 35.3
Tflops.

1. INTRODUCTION

The N-body simulation technique, in which the equations
of motion of N particles are integrated numerically, has been
one of the most powerful tools for the study of astronomi-
cal objects such as the solar system, star clusters, galaxies,
clusters of galaxies and large-scale structures of the universe.

Roughly speaking, the target systems for N-body simula-
tions can be classified into two categories: collisional systems
and collisionless systems. In the case of collisional systems,
the evolution of the system is driven by two-body relaxation
process. In other words, by microscopic exchange of thermal
energies between particles due to gravitational scattering. In
this case, the simulation timescale tends to be long, since the
relaxation timescale is proportional to N/log N, where N is
the number of particles in the system.

The calculation cost of the simulation of collisional sys-
tems increases rapidly as we increase the number of particles
N, because of the following two reasons. First, as stated ear-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

Eiichiro Kokubo
National Astronomical
Observatory of Japan,

Mitaka, Tokyo 181-8588,
Japan

Toshiyuki Fukushige
General System Studies,
College of Arts and Sciences,
University of Tokyo,
Tokyo 153-8902, Japan

lier, the relaxation timescale increases roughly linearly as we
increase N. This means that the number of the timestep also
increases at least linearly[11]. The second reason is that it
is not easy to use fast and approximate algorithms such as
Barnes-Hut tree algorithm[3] or the fast multipole method[6]
to calculate the interaction between particles. This implies
that the cost per timestep is O(N?), and the total cost of
the simulation is O(N?).

The primary reason why it is difficult to use approximate
algorithms is that the orbital timescales of particles can be
wildly different, essentially because the gravity is an attrac-
tive force. Particles can go arbitrary close to each other,
requiring arbitrary short timesteps.

It is clearly very wasteful to apply the same timestep to all
particles in the system, and it is crucial to be able to apply
individual and adaptive timestep to each particle. Such an
“individual timestep” algorithm, first developed by Aarseth
[1, 2], has been the core for practically any program which
handles the time integration of collisional N-body systems
such as star clusters and systems of planetesimals.

In principle, it is not impossible to combine individual
timestep algorithm and fast algorithms such as Barnes-Hut
tree algorithm or FMM. McMillan and Aarseth [16] devel-
oped such combination, where the tree structure is dynami-
cally updated to follow the motion of particles and force on
a particle is calculated using multipole expansion up to oc-
tupole. They assigned predictor polynomials to each node of
the tree structure so that they can calculate the force from
nodes to particles at arbitrary times. However, so far the at-
tempts to implement such algorithms on parallel computers
have not been very successful.

In order to accelerate this kind of N-body simulations, we
have developed a series of special-purpose hardware, starting
with GRAPE-1 [8].

The basic idea of the GRAPE (GRAvity piPE) architec-
ture is to develop a fully pipelined processor specialized for
the calculation of the gravitational interaction between par-
ticles. In this way, a single force-calculation pipeline in-
tegrates more than 30 arithmetic units, which all operate
in parallel. In the cause of the Hermite time integration
scheme[10], we need to calculate the first time derivative of
the force, resulting in nearly 60 arithmetic operations. This

republish, to post on servers or to redistribute to lists, requires prior specific eans that we can integrate a large number of arithmetic

permission and/or a fee.
SC’03,November 15-21, 2003, Phoenix, Arizona, USA
Copyright 2003 ACM 1-58113-695-1/03/0013$5.00.

unit into a single hardware with minimal amount of addi-
tional logic.

The history of GRAPE hardware can be found in [14].
Here we concentrate on its newest incarnation, the GRAPE-
6.

GRAPE-6 is the direct successor of the 1-Tflops GRAPE-
4[15]. The main difference between GRAPE-4 and GRAPE-
6 is in the performance. The GRAPE-6 chip integrates 6
pipelines operating at 90 MHz, offering the speed of 30.8
Gflops, and the entire GRAPE-6 system with 2048 chips
offers the speed of 63.04 Tflops, nearly two orders of mag-
nitude faster than that of GRAPE-4. In this paper, we
briefly overview the architecture of GRAPE-6 and present
a detailed analysis of its performance for real astrophysical
problems.

The plan of this paper is as follows. In section 2, we de-
scribe the overall architecture. In section 3 we discuss the
differences between GRAPE-6 and its predecessor, GRAPE-
4. In section 4 we present the result of performance mea-
surement on simple problems. In section 5, we report the
performance of GRAPE-6 for real scientific problems. Sec-
tion 6 is for summary.

2. THE ARCHITECTURE OF GRAPE-6

In this section, we give an overview of the architecture
of GRAPE-6. It calculates the gravitational force, its time
derivative, and potential, given by the equations

Trij

= Gmy 1
a; ZJ m; (rigj +E2)3/2’ ()
. Vi 3(Vij - Tij)Tij
a; = Z . ij 3 ; - P} ’ (2)

j 2+ PR (1 +)52
1

P = > . Gmj———F—rs 3

¢ ZJ m; (7'2‘2]'+€2)1/2’ ()

where a;, &; and ¢; are the gravitational acceleration, its
first time derivative, and the potential of particle ¢, m;, x;
and v; are the mass, position and velocity of particle i, G is
the gravitational constant and e is the softening parameter.
Relative position and relative velocity r;; and v;; are defined
as

rij =X; — Xi, (4)
Vij =Vj; — Vj. (5)
The position x; and velocity v; of particle j which exerts

the force are “predicted” by the following predictor polyno-
mial

Att At? At?

_ (2) =7 4 f——
xp = paet =do+ ao + Atvo +xo, (6)
At? At
vp = G a<2>o + Tao + Atag + vo, (7)

where x;, and v}, are the predicted position and velocity, xo,
Vo, ap and ap are the position, velocity, acceleration and its
time derivative at time tg, and At is the difference between
the current time t; of particle j and the system time ¢, i.e.,

At =1t —t;. (8)

The top-level architecture of GRAPE-6 is shown in figure
1. The total system consists of 4 clusters, each of which then
consists of 16 GRAPE-6 processor boards and 4 host com-
puters. Clusters are connected through Gigabit Ethernet.
Within a cluster, 16 processor boards forms a 2-dimensional

Figure 1:
GRAPE-6.

The top level network structure of

Figure 2: A GRAPE-6 cluster.

grid, so that board ij calculates the forces on particles on
host i from particles from host j. With this structure, the
bandwidth of the communication between the host comput-
ers does not limit the performance. For parallel program
with multiple clusters, we still need to use the host-host
communication, but the bandwidth is increased by a factor
of four, since four hosts in a same cluster can send/receive
different data in parallel.

Figure 2 shows one cluster. Four processor boards are con-
nected to a host computer through a network board. Four
network boards are connected to each other, so that we can
use a cluster as a single unit or as multiple units. Figure 3
shows the internal structure of the network board.

Figure 4 shows the structure of a single processor board.
It houses 8 processor modules. The processor board has one
broadcast network which broadcasts data from the input
port to all processor modules, and one reduction network
which reduce the results obtained on 32 chips and return to
the host through output port.

Each processor module consists of 4 processor chips each
with its memory, and one summation unit. The structure

GRAPEO

/
il

From 1 GRAPE1

Hosts

<2
</ C

GRAPE2

GRAPE3

w

Figure 3: A 4-input example of switching network
for parallel GRAPE.

proc
modul ejoc

sum
uni t

]

l—!
sum —
[unit

sum [proc

output port '—M uni t nodul ejoc
[Lvos 7 | ire
. uni t

]
1

proc
nodul ejoc
ule

]

sum
uni t

sum
uni t

proc
modul ejoc
ul e|

sum

uni t

Figure 4: The structure of the processor board.

of a processor module is the same as that of the proces-
sor board, except that it has 4 processor chips instead of 8
processor modules.

Figure 6 shows the processor board with eight processor
modules installed.

2.1 Processor chip

The GRAPE-6 processor chip was fabricated using Toshiba
TC-240 process with the nominal design rule of 0.25um. The
physical size of the chip is roughly 10 mm by 10 mm, and
it is packaged into a 480-contact BGA package. It operates
on single 2.5V power supply at 90 MHz clock cycle. Heat
dissipation is around 12 W when in full operation.

A processor chip consists of six force calculation pipelines,
a predictor pipeline, a memory interface and I/O ports. Fig-
ure 7 shows the overview of the chip.

Figure 8 shows the block diagram of the force calculation
pipeline. it evaluates equations (1)-(3).

The predictor pipeline evaluates the predictor polynomials
expressed in equations (6) and (7).

2.2 Packaging and Hosts

Figure 9 shows the complete GRAPE-6 system consisting
of five racks (three with two subracks and two with one sub-
racks), with 16 host computers in front of it. Host computers
are Linux-running PCs, with AMD Athlon XP 1800+ pro-

36

w
>

SSRAM

36— G6 Chip

SSRAM

w
>

w
=3

SSRAM
—{ G6 Chip | 3
=
unit (FPGA) %
—{ G6 Chip

SSRAM

w
=3

SSRAM

l

G6 Chip

SSRAM

w
=3

Figure 5: The structure of the processor module.

Figure 6: The processor board.

/0 PORTS

P
Address
To <Address | MEMORY CONTROLAND [P
Memo INTERFACE 10 UNIT
ory Data UNIT F
Chips «——— _.o

PREDICTOR
PIPELINE [—>

UNIT

INTERACTION
PIPELINE
UNIT

Figure 7: The block diagram of the processor chip.

Figure 8: The block diagram of the force calculation
pipeline.

Figure 9: The 64-board, 4-cluster GRAPE-6 with
16 host computers.

cessors and ECS K7S6A motherboards. They are connected
with Gigabit Ethernets. The total power consumption of
the system is around 40 KW, when in full operation.

3. DIFFERENCESBETWEEN GRAPE-4 AND

GRAPE-6

As described in the previous sections, the architecture of
GRAPE-6 is quite different from that of GRAPE-4, even
though it is the direct successor of GRAPE-4 for essentially
the same goal. In this section, we describe what design
changes are made why.

3.1 Differences in the semiconductor technol-

ogy
The primary difference is that for GRAPE-6 processor
chip we used 0.25um design rule, while with GRAPE-4 we
used 1pm design rule. This difference with additional ad-
vance in wiring enables us to integrate roughly 20 times
larger number of transistors, with 3-4 times faster clock
speed. Thus, roughly speaking, a single GRAPE-6 chip of-
fers the speed two orders of magnitude higher than that of
GRAPE-4.
This large advance, however, implies almost every design
decision had to be changed. In the following, we summarize
the changes made.

3.2 The host computer and overall architec-
ture

In GRAPE-4, 4 clusters are connected to a single host,
sharing one I/O bus. For the peak speed of 1 Tflops, the
single host was still okay for simulations with large number
of particles (10° and larger), and communication through a
single I/O bus was also okay.

With GRAPE-6, however, the peak speed is increased
roughly by a factor of 100. On the other hand, the speed
of a single host would be improved only by a factor of 10
or so, if we assume the standard Moore’s law (performance
doubling time of 18 months). Thus, if we want to achieve a
reasonable speed for similar number of particles as that for
GRAPE-4, we need to use around 10 host computers and
the communication channel must be 10-20 times faster than
that used for GRAPE-4.

Around the time of the design, it was clear that a shared-
memory multiprocessor system with 8-16 processors and
sufficient I/O bandwidth would be prohibitingly expensive,

HOST J—{ GRAPE |
HOST J}—{ GRAPE |

HOST}—{GRAPE)
HOSTHGRAPE)

Figure 10: A simple parallel-host, parallel-GRAPE
system.

Network
Switch

with the price tag of the order of 1 M USD. On the other
hand, a cluster of 8-16 single-processor workstations or PCs
would be much less expensive. As far as the cost is con-
cerned, clearly a cluster of single-processor machines was
better than a shared-memory multiprocessor system.

One problem with the cluster is that the simplest con-
figuration (see figure 10) does not work. The reason is the
following.

With this configuration, there are two different ways to
distribute particle data over processors[9]. One is that each
processor has the complete copy of the system (the “copy”
algorithm). In this case, parallelization is performed as fol-
lows. At each blockstep, each processor determines which
particles it updates. After all processors update their share
of particles, they exchange the updated particles so that all
processors have the updated copy of the system. This algo-
rithm has been used to implement the individual timestep
algorithm on distributed-memory parallel computers [19]

In this algorithm, at the end of one block timestep each
processor receives the particles updated on all other proces-
sors. This means the amount of communication is indepen-
dent of (or, strictly speaking, is a slowly increasing function
of) the number of processors, and the overall performance
of the system is limited by the speed of communication.

The other possibility is to let each processor to have a
non-overlapping subset of the system, so that one parti-
cle resides only in one processor. In this case, with the
blockstep algorithm we need to pass around the particles
in the current blockstep, so that each processor can calcu-
late the forces from its own particles to particles on other
processors(the “ring” algorithm). The amount of communi-
cation (host-host and host-GRAPE) per blockstep is again
independent of the number of processors. This algorithm is
also implemented on distributed-memory parallel computers
with direct summation [5] and even with the tree algorithm
[18].

For general-purpose parallel computers, this simple algo-
rithm actually works rather well, simply because the calcu-
lation speed of single node is so slow. Even a cluster with
several hundred nodes is still slower than a single GRAPE-
4. So the communication speed of 10-100 MB/s is sufficient.
However, with GRAPE-6 we do need a faster speed.

Now we understand that it is possible to use a hybrid of
the above two algorithm to solve the bottleneck [9]. In this
hybrid algorithm, we organize processors into two-dimensional
grid, and distribute the particles so that each row (and each
column) has the complete copy of the system.

In the standard realization, this algorithm requires that

990 901 9p2 t)
90 991 99 t)
99 991 q

&

Figure 11: An example of 2D processor array.

\/

total number of processors is 72, where r is a positive integer
number. Figure 11 shows an example of a 3% array. We
divide N particles into r subsets, each with N/r particles.
If we number processors from pi1 to p,-, processor p;; has
the copy of both i-th and j-th subsets.

At the beginning of the each blockstep, each processor
selects the particles to be updated from subset i. Then all
of them calculate the force on them from subset j. After
that, the total forces can be calculated by taking summation
over columns. Here, we assume that the summed results are
obtained on diagonal processors pi;.

After particles in the current block are updated on p;;,
they are broadcasted to all other processors in the same row
(pa2:) and also in the same column (p;s) so that both subsets
¢ and j are updated on each processor.

In this algorithm, the amount of communication for one
node is O(N/r). In other words, the effective communi-
cation bandwidth (both host-host and host-GRAPE) is in-
creased by a factor r. Thus, the communication speed is
improved by a factor proportional to the square root of the
number of processors.

At present, this solution looks fine, since the price of the
fastest single-processor frontend is now rather low. The cost
of the communication network is also rather low, with Gi-
gabit Ethernet adapters available for less than 100 USD per
unit.

When we started the design of GRAPE-6 in 1996, we did
not expect such a drastic change in the price of fast frontend
processors. At that time, RISC microprocessors were still
several times faster than PCs with TA-32 architecture, and
100Mbit Ethernet adapters were still expensive. Thus, we
had to come up with a design that did not need r? processors
or fast host-host communication.

It was not really difficult to come up with such a design,
since the only thing non-diagonal processors does is the force
calculation. Instead of two-dimensional grid of host proces-
sors, we can construct a two-dimensional grid of GRAPE
hardwares with orthogonal broadcast networks (figure 12).
The GRAPE hardwares in the same row store the same data
to their particle memories. When they calculate the forces,
GRAPES in the same column receive the same particles and
calculate forces on them from particles in the memory. The

Figure 12: Two-dimensional network of GRAPE
hardwares connected to one-dimensional host net-
work.

calculated results on boards in the same column are then
summed and returned to the host.

One practical problem with this network architecture is
that we cannot divide the system to smaller configurations
so that we can run multiple programs. In the case of r?
hosts, we can divide the system to any sub-squares, down
to 72 single host-GRAPE pairs. In the case of 2D hardware
network, we do not have any such division. This problem
can be partly circumvented by attaching a simple switching
network before memory interface, so that they can select
input. So we adopted the network structure shown in figure
3.

In the final design of GRAPE-6, we actually adopted a hy-
brid of host-grid approach and GRAPE-network approach,
to make a reasonable compromise between the flexibility and
absolute performance. Of course, this shift from the pure
hardware network to hybrid one is made partly because we
took into account the evolution of the host computers dur-
ing the development period of GRAPE-6. It has become
more cost effective to use large number of inexpensive (yet
fast) computers as host than to have an elaborate hardware
network to connect GRAPEs to small number of hosts.

3.3 board-board connection

GRAPE-4 consisted of 36 processor boards, organized in
a two-stage simple tree network. Nine boards are housed in
one rack, with one backplane bus. These boards are all con-
nected to a control board, which broadcasts the data from
the host to all processor boards and take the summation
of the calculated data on nine processor boards. Since all
boards are connected through a shared backplane bus, the
control board has to access processor boards serially. In or-
der to improve the data transfer rate, we used a wide data
bus with the width of 96 bits.

The connection between the control board and the host
was a 32-bit parallel connection through a coaxial flat ca-
ble. This connection is robust and reliable, but had three
drawbacks: it was physically large, it was difficult to use
long wires, and it was pretty expensive. Because a common

clock signal is used on the both side of the connection, the
wire length is limited by the allowable signal skew, which
means it is difficult to use fast clock (GRAPE-4 used 16
MHz clock).

A more practical problem is that board-board wiring would
become too bulky and cumbersome, with hundreds of flat
cables and nearly 10,000 contact points, if we use the same
connection for GRAPE-6. In particular, it would be dif-
ficult to design the network board, since it needs to have
more than 10 connectors. Also, it would be impractical to
use a backplane to connect the network board and proces-
sor boards, since the number of pins on the network board
would be too large.

An obvious solution for this problem is to use a fast serial
signal, such as the physical layer of the Gigabit Ethernet.
At the time of our design decision, however, Gigabit Ether-
net was unpractical because copper wire connection was not
available in 1998. Optical connection would be too expen-
sive and would dissipate too much heat.

We adopted what is called “LVDS Link” or “Flat Panel
Display (FPD) link”, which uses four twisted-pair differen-
tial signal lines (three for signals and one for clock). The
reason we chose this interface was that inexpensive serial-
izer /deserializer chips were commercially available and that
we could use standard category 5 shielded 4-pair cables for
100Mbit Ethernet cable and its connectors for reliable data
transmission, for the cable length up to about 5 meters.

Additional advantage of this choice is that we can use
backplane connection (with custom-designed signal pattern)
for connection between the network board and processor
boards. Because the number of signals is small (8 for one
port), we can pack many ports into a standard backplane
connector (we adopted Compact PCI connector).

3.4 Pipeline chip and memory interface

The processor chip for GRAPE-4 had a single pipeline,
which calculates forces on two particles in every six clock
cycles (2-way VMP). During force calculation, one chip re-
ceives the data of one particle (position, velocity and mass)
in every three external clock cycles, and the width of the
input data bus was 107 bits.

One GRAPE-4 board housed 48 pipeline chips, all of which
receive the same particle data from the memory and calcu-
late the force on two particles. This means that a single
board calculates forces on 96 particles in parallel.

This shared-memory architecture is simple to implement.
However, we could not use this architecture for GRAPE-
6, since the hardware parallelism would become excessively
large. The pipeline chip for GRAPE-6 would be roughly
50 times faster than that for GRAPE-4. Thus, even if we
somehow increase the data transfer rate by a factor of 5,
the number of particles on which the forces are calculated
in parallel would increase by a factor of 10, from 100 to
1,000. This number is too large, if we want to obtain a
reasonable performance for simulations of star clusters with
small, high-density cores. Note that with multiple-board
configurations, this number would become even larger. On
an r X r two-dimensional system, the degree of parallelism
becomes larger by a factor of r.

The data transfer rate of GRAPE-4 chip was about 200
MB/s. To keep the degree of parallelism to be around 100 or
less, the GRAPE-6 chip would have to have the data transfer
rate of 5 GB/s, which was well beyond our capability of

designing and manufacturing. At 100 MHz clock, the speed
of 5 GB/s requires 400 input pins. It is quite difficult to have
400 signal lines, all with 100 MHz data rate, to connect more
than a few chips.

Clearly, a different design was necessary. Too large de-
grees of parallelism arose from our decision to let a large
number of chips to share one memory unit. If we reduce
the number of chips to share the memory, we can solve the
problem. The extreme solution is to attach one memory unit
to each pipeline chip, and let multiple pipelines to calculate
the force on the same set of chips, but from different set of
particles.

This extreme solution has one important practical advan-
tage. The connection between the processor chip and its
memory is point-to-point, and physically short (since we can
put a processor chip and its memory next to each other).
This means a high clock frequency, such as 100 MHz, is
relatively easy to achieve.

To attach memory chips directly to the processor chips,
we need to integrate the predictor pipeline and the mem-
ory controller unit (generation of address and other control
signals) to the processor chip. These do not consume much
transistors. Therefore it does not have any effect to the
performance of the chip.

With GRAPE-6, we adopted a 72-bit (with ECC) data
width for transfer between memory and the processor chip.
A GRAPE-6 chip integrates six 8-way VMP pipelines. There-
fore it calculates the forces on 48 particles in parallel. All
pipelines on board calculate the forces on the same set of
particles. Thus, even with the largest configuration we con-
sidered (an 8 x 8 system), the degree of the parallelism is
still less than 400, not much different from that of full-size
GRAPE-4 (which was also 400).

This change from the shared memory design to the local
memory design implied we had to take summation of large
number of partial forces obtained on chips on one board.
With GRAPE-4, we had to take summation of forces ob-
tained on different boards, and we used commercially avail-
able single-chip floating-point arithmetic units for this sum-
mation. With GRAPE-6, we could not apply this solution
simply because such chips no longer existed. Thus, we have
to either integrate this summation function into the proces-
sor chip, or develop another chip to take summation.

We adopted the latter approach, but used FPGA (Field-
programmable gate array) chips to implement adders. It
was not impossible to integrate floating-point adders into
FPGAs, but such a design would require rather large, ex-
pensive FPGA chips and a complex design. In order to
simplify the design, we chose to use a block floating point
format for the force and other calculated result. In this for-
mat, we specify the exponent of the result before we start
calculation. The actual value of exponent can be different
for forces on different particles, so that we can calculate the
forces with wildly different magnitudes in parallel.

With this block floating point method, we can greatly
simplify the design of the hardware to take the summation.
Of course, we have to supply the value of exponent, but
the value of the exponent at the previous timestep is almost
always okay. For the initial calculation, we sometimes need
to repeat the force calculation a few times until we have a
good guess for the exponent.

A rather important advantage of the block floating point
format is that the calculated result is independent of the

number of processor chips used to calculate one force. Since
the actual summations, both within the chip and outside
the chip, are done in fixed-point format, no round-off error
is generated during summation. Of course, round-off error
is generated when we shift the calculated force to meet the
block floating point format, but this error is independent
of the order in which the summation is performed. In the
case of the usual floating-point format used in GRAPE-4,
the round-off error generated in the summation depends on
the order in which the forces from different particles are ac-
cumulated, and therefore the calculated force is not exactly
the same, if the number of boards in the system is different.

Of course, this difference does not have any effect on the
accuracy of the simulation itself, since the word length it-
self is chosen as such. However, it is quite useful to be able
to obtain exactly the same results on machines with differ-
ent sizes, since it makes the validation of the result much
simpler.

4. PERFORMANCE

Here we discuss the performance of GRAPE-6 with indi-
vidual timestep algorithm. As the benchmark run, we in-
tegrated the Plummer model with equal-mass particles for
1 time unit (we use the “Heggie” unit [7]). We used stan-
dard Hermite integrator [10]. For the softening parameter,
we tried three different choices. The first one is a constant
softening, e = 1/64. We also tried e = 1/[8(2N)'/3] and
e = 4/N, to investigate the effect of the softening size. Note
that for N = 256, all three choices of the softening give the
same value.

4.1 single-node performance

Figure 13 shows the actual calculation speed achieved as
a function of the number of particles N. Here, we define the
calculation speed as

S = 57anteps; (9)

where nsieps is the average number of individual steps per-
formed per second. The factor 57 means we count one pair-
wise force calculation as 57 floating-point operations. We
took this number from recent entries for Gordon Bell Prize.
We assign 38 floating-point operations for the calculation of
the pairwize gravitational force, following [20]. The calcula-
tion of the time derivative requires additional 19 operations,
resulting in 57 operations per pairwize interaction. From
this figure, we can see that the achieved speed is practically
independent of the choice of the softening.

Roughly speaking, we can model the calculation time per
one particle step as follows:

Tsingle - Thost + Tcomm + TGRAPE, (10)

where Thost is the time needed by the host computer to
perform computations to integrate one particle, Teomm is
the time needed for the communication, and Tarapk is the
time to calculate force on GRAPE.

In figure 14, the solid curve shows the measured result for
the CPU time per step. The dashed curve is a fit, with con-
stant Thost- The dotted curve is an empirical model which
takes into account the effect of the cache-hit rate of the host.
For small N, the cache-hit rate is higher and therefore the
calculation on the host is faster. This model is purely em-
pirical, but apparently gives a reasonable description for the
performance.

1000 E
a F

Q

k)
g

5 100 £ 3
[F

o

Q

2 e=1/64

o VEZ.‘/(ZWD/SNW/})

10 E

1 METETEETI sl vl vl "
100 1000 10* 10° 10®

N

Figure 13: The calculation speed of 1-host, 4-board
system in Gflops, plotted as a function of the num-
ber of particles in the system.

5x107° — MR B AL B B |
Q
9]
®
8 2x1070}
o
£
2
o 10_5 C]
measured
5><1O_6 L — — -theory
————— theory(2)
REETTTY BT EEET R EETET T R
100 1000 10* 10° 10°

N

Figure 14: CPU time per one particle step plotted
as a function of the number of particles N. Solid
curve is the measured result. Dashed and dotted
curves denote two different theoretical estimates.

For N < 1000, the experimental value is larger than the
prediction of the refined theory. This is because the number
of particles in one block is too small. The overhead to invoke
DMA operations becomes visible.

4.2 multi-node performance

Figure 15 shows the calculation speed for multi-host sys-
tems with up to 4 hosts. For up to 4 hosts, the network
boards are used to distribute the data, and the communi-
cation network between the host computers are used only
for synchronization. The parallel program itself is written
using MPI, and we used MPICH/p4 over TCP/IP as the
MPI library. The network interface is Planex GN-1000TC,
which uses NS 83820 chip. We found the performance of
MPICH/p4 on this network interface to be quite unsatis-
factory, and used UNIX TCP/IP socket system calls for ac-
tual communication. The parallel algorithm used here is an
individual-timestep variant of 2-dimensional algorithm de-
scribed in [9].

We can see that a multi-host system require rather large

o
EN

o

o

o
T

Speed (Gflops)

100 £

1/...r'.........l R R B
100 1000 104 108 108

000 £

Speed (Gflops)

100 £

1,{.l"’........l AT T B
100 1000 10* 10° 10°

N

Figure 15: The calculation speed in Gflops plotted
as a function of N. Solid, dashed and dotted curves
show the results for 1, 2 and 4-node systems, respec-
tively. The left panel shows the result for constant
softening, and the right panel ¢ = 4/N.

number of particles to achieve the speed faster than that
of the single-host system. Even with the constant softening,
the two-host system becomes faster than the single-host sys-
tem only at N ~ 3000, and for ¢ = 4/N, this crossover point
moves to around N ~ 3 x 10%.

Figure 16 shows the calculation time per one particle step
for 4-node parallel calculation. This figure clearly shows
why the value of N for the crossover is rather large. For
“small” N (N < 10*), the calculation time is inversely pro-
portional to the number of particles N. This is because the
communication between hosts, which takes constant time
per one blockstep, dominates the total cost in this regime.
Note that the number of particles integrated in one blockstep
(the number of particles which share the same current time)
is roughly proportional to N. An extension of the perfor-
mance model which includes the synchronization overhead
reproduces the measured result quite accurately.

4.3 multi-cluster performance

Parallelization over multiple clusters is achieved by the so-
called “copy” algorithm, where each cluster maintains the
complete copy of the entire system, but integrate only its
share of particles. After one step is finished, all clusters

2x107%
107
<+
& 5x107®
e
measured
2)(10_6 — — -theory
------ theory(2)
10—6 1 1
1000 10* 10° 108

Figure 16: Same as figure 14 but for the case of
4-node parallel calculation.

Speed (Tflops)
o

_

Figure 17: The calculation speed in Tflops plotted
as a function of N. Solid, dashed and dotted curves
show the results for 4, 8 and 16-node (1, 2, and 4-
cluster)systems, respectively. Constant softening is
used for all runs.

exchange the updated particles.

Figure 17 shows the calculation speed for multiple-cluster
systems, as a function of the number of particles in the
system N. The crossover point at which multi-cluster sys-
tems becomes faster than single-cluster system is rather high
(N ~ 10%), and even for N = 10°, the speedup factors
achieved by multi-cluster systems are significantly smaller
than the ideal speedup.

Figure 18 shows the calculation time per one particle step
for full-cluster calculation (16 nodes, 4 clusters). Theoretical
estimate took into account the fact that hosts on different
cluster need to exchange the data of particles. Here, again,
the calculation time per one particle step is inversely pro-
portional to N, for N < 10°. This means that the main
bottleneck is again the synchronization time.

4.4 Performance tuning

From the benchmark results, we can see that the perfor-
mance of a single-node system is pretty good with better
than 1 Tflops at N = 2 x 10°. The performance of the par-

10'5_ T S aa.
measured
A
5%10 6 \ — — -theory
\ ————— theory(2)
© \
N
<
N e
2x107° S
10—6 1l 1
10* 10° 108

Figure 18: Same as figure 14 but for the case of
16-node parallel calculation.

allel calculation with up to 4 nodes, for which the inter-node
communication is via the hardware network on the side of
the GRAPE (single-cluster code), the performance is accept-
able, with the crossover point (compared to a single-node
code) less than 10* particles for relatively large gravitational
softening. However, for the parallel calculation with 8 and
16 nodes (multi-cluster code), the crossover point (compared
to the 4-node code) goes up beyond 10° particles.

With both single-cluster and multi-cluster parallel codes
the communication latency limits the performance. The
communication bandwidth is relatively unimportant, even
for the case of multi-cluster calculation. The reason why we
can conclude that latency is more important is that in figures
16 and 18, calculation time per particle increases for smaller
N, roughly in proportional to 1/N. If the bandwidth lim-
its the performance, calculation time would be constant in
the limit of small N. If the latency limits the performance,
the calculation time is proportional to 1/N, since calcula-
tion time is determined by the number of synchronization,
which is necessary at every timestep. The number of parti-
cles integrated in one timestep is roughly proportional to N.
Therefore the time per particle behaves as 1/N for small N.
For the multi-cluster code, this synchronization overhead is
far more severe, because (a) the calculation speed itself be-
comes faster, (b) overhead of one synchronization operation
becomes larger, and (c) the number of synchronization op-
eration itself is larger with the multi-cluster code, since it
requires data transfer between host computers.

In order to improve the performance of the parallel code,
thus, it is most important to reduce the synchronization
overhead. With our current code, synchronization is done
through butterfly message exchange using TCP/IP, which
is about two times faster than the use of MPI_bbarrier pro-
vided by MPICH/p4 over TCP/IP. There are several pos-
sibilities to further reduce the overhead. Clearly, the most
obvious solution is to move to a faster network hardware
such as Myrinet. Myrinet would provide the latency 5-10
times shorter than usual TCP/IP over Ethernet.

Unfortunately, we could not try this option simply be-
cause we did not have much funding support this year. So
we investigated several other options. One possibility would
be to use some communication software which bypasses the

o
T

Speed (Tflops)

_
T

0.1 T Y S
10* 10° 108

Figure 19: Comparison of the calculation speed with
Intel 82540EM (upper curve) and NS 83820 (lower
curve).

TCP/IP protocol layer, such as GAMMA or VIA. Another
possibility would be to try different NIC/driver software,
while using TCP/IP and socket interface. In the following,
we report the result of pursuing the last option. Originally,
we used an AMD box and Gigabit NIC based on NS 83820
controller chip. With this combination, round-trip latency
was around 200us, and the peak bandwidth was 60 MB/s.
We tried two other NICs, one is Netgear GA621T with Tigon
2 chipset, and the other is the Intel 82540EM chip on board
on Iwill P4GB mainboard. Since P4GB is a mainboard for
Intel P4, for this one we used Intel P4 2.53GHz processor,
overclocked to 2.85GHz. Tigon 2 shows somewhat better
throughput (85MB/s), but not much improvement in the la-
tency. However, Intel 82540EM gave us a surprisingly good
result. The round-trip latency was cut down to 67us, and
the throughput is increased to 105MB/s.

Figure 19 shows the performance of our original system
with NS83820+AMD Athlon and that of the new system
with Intel 82540EM+Intel P4. We can see that the perfor-
mance is improved by 50-100% for the entire range of N.
The improvement is larger for smaller N, since the commu-
nication overhead is more serious with smaller N. For 1.8M
particles, the measured speed reached 36.0 Tflops.

5. PERFORMANCE FOR REAL APPLICA-
TIONS

In the previous section, we reported that the sustained
speed of GRAPE-6 reached 36 Tflops. In this section, we
present two real applications, where similar speed has been
achieved. The first one is the evolution of early Kuiper belt
region. The detail of the scientific rational and problem
setup is given in [12]. We used 1.8M particles.

We performed a simulation for 21120 dynamical time units,
for which the number of individual steps was 1.911 x 10,
The whole simulation, including file operations, took 16.30
hours. The total number of floating point operations is
1.911x 10 x 1799999 x 57 = 1.961 x 10*®, since one particle-
particle interaction amounts to 57 floating point operations
as we described in section 4. The resulting average comput-
ing speed is 33.4 Tflops.

The second example is the simulation of a binary black
hole. This calculation is similar to the one we reported in
[13]. Recently, several groups tried to study this problem,
using parallel code or hybrid method. Maximum number
of particles used in these recent works is 4 x 10°, signifi-
cantly smaller than what GRAPE-4 could handle in 1995,
even when a highly-approximate method was used [4]. The
largest number of particles used for this type of calculation
with direct summation code without using GRAPE hard-
ware is currently 32,768 [17].

With GRAPE-6, we used 2M particles. The initial model
is a standard Plummer model. We placed two “black hole”
particles, which are just massive point-mass particles, with
mass 0.5% of the total mass of the system. We integrated the
system for 36 time units. for which the number of individual
steps was 4.143 x 10'°. The whole simulation, including file
operations, took 37.19 hours. The total number of floating
point operations is 4.143 x 10'° x 1999999 x 57 = 4.723x 108,
The resulting average computing speed is 35.3 Tflops.

It might be useful for illustrative purpose what kind of
performance one can achieve with Barnes-Hut treecode on a
PC-cluster or massively-parallel general-purpose computer
for these problems. Since treecodes scales as O(N log N),
it is appropriate to compare the speed not in terms of the
raw flops but in terms of number of particle times steps
per second. In above examples, the speed achieved with
GRAPE-6 is around 3.3 x 10° particle steps per second.

The only implementation of BH treecode with individ-
ual timestep on distributed-memory parallel computer with
detailed performance measurement available is Gadget[18].
Unfortunately, the performance of this code does not scale
well for more than 16 processors in the case of Cray T3E.
The reason lies in the parallelization strategies they used,
as we discussed in introduction and section 3.2. In their
parallel algorithm, even in the ideal case, amount of com-
munication per processor is constant, independent of the
number of processors. In practice, communication cost ac-
tually increases, since even though the amount of the data
transfer is constant, the number of communication transac-
tion is proportional to the number of processors. On the
other hand, the calculation cost per processor reduces as we
increase the number of processors. Thus, the performance
does not scale even with very fast communication available
with T3E. For 16 nodes, the measured speed was around
10% steps/sec, or around 3% of the speed achieved with our
calculations described above. This measurement, however,
is for force accuracy much lower than required in our calcu-
lation. For acceptable force accuracy, we provably need at
least five times more CPU time, which would result in the
speed less than 1% of what we obtained.

If individual timestep is not used, treecode on PC clus-
ters or MPPs has shown very good scalability. For example,
Warren et al. [20] ran the treecode on 6800-processor ASCI-
red, and achieved the speed of 2.55 x 10° particle-steps per
second, around 7 times faster than GRAPE-6. However, this
is for shared timestep. If we use shared timestep, we need
at least 100 times more particle steps, since the ratio be-
tween the smallest timestep and (harmonic) mean timestep
is larger than 100 for both test calculations. In addition, the
accuracy of the force was also rather low for the calculation
by Warren et al., so if we assume we need a factor of 5 more
calculation cost (this is probably underestimate), shared
timestep treecode on 6800-processor ASCI-Red would run

approximately 1/70 of the speed of GRAPE-6 for our appli-
cations described above.

Even though they gives some idea on the relative perfor-
mance of GRAPE-6 and BH treecode, these comparisons re-
main rather speculative, since there is no good implementa-
tion of high-accuracy BH treecode with individual timestep
on distributed-memory parallel computer. In fact, we do
not even know whether it is possible to develop a reasonably
scalable parallel algorithm for the combination of individual
timestep and BH tree.

6. SUMMARY

In this paper, we presented the overview of the perfor-
mance characteristic of GRAPE-6, a special-purpose com-
puter for astrophysical N-body problems. The theoretical
peak speed of GRAPE-6 is 63 Tflops. We have shown that a
reasonable fraction of this theoretical peak speed can be re-
alized with real scientific applications, for modest number of
particles. The best measured application performance was
35.3 Tflops.

The main bottleneck of the performance is currently the
synchronization overhead of host computers. We are cur-
rently investigating ways to further reduce this overhead.

Acknowledgments

We would like to thank all of those who involved in the
GRAPE project. In particular, We thank Daiichiro Sugi-
moto for his continuous support to the project, Masaki Koga
and Atsushi Kawai for helping the hardware design, Yoko
Funato, Simon Portegies Zwart, Piet Hut, Steve McMillan,
Sverre Aarseth and many others for discussions on the ex-
perience with GRAPE-4. We thank Ken Namura of IBM,
who did the gate-level design of GRAPE-6 chip, and many
others from IBM, Toshiba, Ebrain, Kyoden, Uber, Hama-
matsu Metrix and other companies who involved in the man-
ufacturing of the hardware. This work is supported by the
Research for the Future Program of Japan Society for the
Promotion of Science (JSPS-RFTF97P01102).

7. ADDITIONAL AUTHORS

Additional authors: Hiroshi Daisaka (Department of As-
tronomy, School of Science, University of Tokyo, Tokyo 113-
0033, Japan)

8. REFERENCES

[1] J. Aarseth, Sverre. Dynamical evolution of clusters of
galaxies, i. Monthly Notices of Royal Astronomical
Society, 126:223-255, 1963.

[2] S. J. Aarseth. Star Cluster Simulations: the State of
the Art. Celestial Mechanics and Dynamical
Astronomy, 73:127-137, 1999.

[3] J. Barnes and P. Hut. A hiearchical o(nlogn) force
calculation algorithm. Nature, 324:446-449, 1986.

[4] P. Chatterjee, L. Hernquist, and A. Loeb. Effects of
wandering on the coalescence of black hole binaries in
galactic centers, astro-ph/0302573, 2003.

[5] E. N. Dorband, M. Hemsendorf, and D. Merrit.
Systolic and hyper-systolic algorithms for the
gravitational n-body problem, with an application to
brownian motion. J. Comput. Phys, 185:485-511,
2003.

[6]

7]

[14]

[15]

[18]

L. Greengard and V. Rokhlin. A fast algorithm for
particle simulations. Journal of Computational
Physics, 73:325-348, December 1987.

D. C. Heggie and R. D. Mathieu. Standardised units
and time scales. In P. Hut and S. McMillan, editors,
The Use of Supercomputers in Stellar Dynamics,
pages 233-236, New York, 1986. Springer.

T. Tto, J. Makino, T. Ebisuzaki, and D. Sugimoto. A
special-purpose n-body machine grape-1. Computer
Physics Communications, 60:187-194, 1990.

J. Makino. An efficient parallel algorithm for O(N?)
direct summation method and its variations on
distributed-memory parallel machines. New
Astronomy, 7:373-384, Oct. 2002.

J. Makino and S. J. Aarseth. On a hermite integrator
with ahmad-cohen scheme for gravitational
many-body problems. Publications of the
Astronomical Society of Japan , 44:141-151, 1992.

J. Makino and P. Hut. Performance analysis of direct
n-body calculations. The Astrophysical Journal
Supplement Series , 68:833-856, 1988.

J. Makino, E. Kokubo, T. Fukushige, and H. Daisaka.
A 29.5 tflops simulation of planetesimals in
uranus-neptune region on grape-6. In Proceedings of
S5C2002, pages CD-ROM, Los Alamitos, 2003. IEEE
Comp. Soc.

J. Makino and M. Taiji. Astrophysical n-body
simulations on grape-4 special-purpose computer. In
Supercomputing 95, pages CD-ROM, Los Alamitos,
1995. IEEE Comp. Soc.

J. Makino and M. Taiji. Scientific Simulations with
Special-Purpose Computers — The GRAPE Systems.
John Wiley and Sons, Chichester, 1998.

J. Makino, M. Taiji, T. Ebisuzaki, and D. Sugimoto.
Grape-4: A massively parallel special-purpose
computer for collisional n-body simulations. The
Astrophysical Journal , 480:432-446, 1997.

S. L. W. McMillan and S. J. Aarseth. An o(n log n)
integration scheme for collisional stellar systems. The
Astrophysical Journal , 414:200-212, 1993.

M. Milosavljevié and D. Merritt. Formation of
Galactic Nuclei. The Astrophysical Journal ,
563:34—62, Dec. 2001.

V. Springel, N. Yoshida, and S. D. White. Gadget: A
code for collisionless and gasdynamical cosmological
simulations. New Astronomy, 6:79-117, 2001.

R. Spurzem and H. Baumgardt. A parallel
implementation of an aarseth n-body integrator on
general and special purpose supercomputers.
submitted to Monthly Notices of Royal Astronomical
Society, 1999.

M. S. Warren, J. K. Salmon, D. J. Becker, M. P.
Goda, T. Sterling, and G. S. Winckelmans. Pentium
pro inside: I. a treecode at 430 gigaflops on asci red, ii.
price/performance of $50/mflop on loki and hyglac. In
Proceedings of SC97, pages (CD-ROM). ACM, 1997.

