N-body simulations (on general- and
special-purpose supercomputers)

Jun Makino
Kobe University/RIKEN AICS/TiTech ELSI/

Nov 24, 2017, AMNH

Overview
e History of direct N-body simulations

e Future directions of N-body simulation methods

e Summary

History of direct IN-body simulations

e Before 1986: Aarseth and scalar computers
e 1986: blockstep scheme
e 1992: 4th-order Hermite scheme

e 1995, 2001: GRAPE-4 and GRAPE-6: without the
neighbor scheme

e 1999(7): NBODYG6++ parallel neighbor scheme

e 2006: Ninja scheme

e 2011: P°T scheme

e 2012, 2015: NBODY6+GPU, NBODY6++ + GPU

Before 1986: Aarseth and

scalar Computers
Individual timestep:
e Each star has its own time t; and timestep At,;.

e One with minimum ¢;4+ At; is selected and updated,
using the predicted position of other stars.

e Use 4-step, 4th-order predictor-corrector scheme
with variable timestep.

Neighbor scheme

e Separate total force on a star to two parts: neigh-
bor and “regular” (the rest).

e Apply different timesteps to two parts.

e Change in the neighbor list need to be corrected
at each regular step.

1986: blockstep scheme

THE VECTORIZATION OF SMALL-N INTEGRATORS

Stephen L. W. McMillan
Northwestern University
Department of Physics and Astronomy
Evanston, Illinois 60201

While it is very likely that supercomputers will greatly expand our understanding of the
behavior of large self-gravitating systems, it is also probable that they will enable us to study
exhaustively the dynamics of much smaller star clusters and associations. Through the simulation
of large numbers of such systems (those containing less than, say, five hundred stars), one might
hope eventually to put the small N-body problem on the same statistical footing as has already
been achieved in the three- and four-body cases (Hills 1975, Hut and Bahcall 1983, Hut 1984,
Mikkola 1984). Among the many issues that can be addressed are the timescales and modes of
cluster dissolution, the formation and energy distribution of binary systems, and the detailed
microphysics of individual stars’ orbits and interactions.

In adapting existing codes for use on supercomputers, new, machine-dependent considera-
tions inevitably arise. The current fastest machines derive much of their speed from their ability
to operate in so-called “vector” mode, where the same operation is applied to successive elements
of an array, at a rate much greater than would be attained if the calculation were done one element
at a time (that is, in “scalar” mode). The details of the implementation of vector calculations vary
widely from one machine to another, but, in general, the speed of an arithmetic operation can

1986: blockstep scheme

e “Quantize” the stepsize to powers of two. Update
the stars with the same time in parallel.

e Much better parallel efficiency

e Reduction of the calculation cost of the predictor

of other stars.

PP
/"\|
: |
i | | | |
U, VAL
n |=’-__‘<*____|
NG NG

1992: 4th-order Hermite scheme
(JM and Aarseth 1992)

e Calculate “jerk” (first time derivative of accelera-
tion) in addition to acceleration.

e Use two-point Hermite interpolation to construct
4th-order integrator. (“single step” scheme)

e Works with neighbor scheme as well.
e Several advantages

— Easier to write

— Longer timestep: Better efficiency on
parallel /vector /special-purpose machines

1995, 2001: GRAPE-4 and
GRAPE-6

e Both rely on blockstep + Hermite scheme

e We did not implement the neighbor scheme: to
minimize the work of the host CPU

1999: NBODY6++ parallel neighbor

scheme
(Spurzem 1999)

e Each process keeps the complete copy of the sys-
tem

e After the list of stars to be integrated in the cur-
rent step is determined, each process determine its
share to update.

e Updated results are exchanged between processes.
e Relies on blockstep, Hermite and neighbor scheme.

e Works great for moderate number of processes.

2006: Ninja scheme
(Nitadori+ 2006)

e Parallelize in two dimensions: Force calculation on
one particle is parallelized as well.

e Communication i1s minimized.
e Scales to thousands of cores for IN ~ 10° or

e No one tried to combine this method with neighbor
scheme yet...

2011: P°T scheme
(Oshino+ 2011, Iwasawa+ 2016)

e Latest (as far as I know) approach to use treecode
to integrate collisional systems.

e Previous efforts: Jernigan and Porter 1989, McMil-
lan and Aarseth 1993, (Richardson 1993).

® Previous works tried to combine tree and individ-
ual timestep

e We gave up, and split gravitational interaction into
two terms using distance-dependent switching func-
tion (same as Mercury integrator for planetary dy-
namics)

e Apply treecode + leapfrog to long-range term, and
Hermite to short-range term.

e Seems to be quite promising.

P3T scheme

Good news:

e Calculation cost is O(N log N) per crossing time.
Thus, one N removed.

e Parallelization method has been well known and is
highly efficient, on a variety of architectures

e This is because you need to optimize (mostly...)
tree part only

Not so good news:

e No production-quality code (with regularization,
stellar evolution, etc) yet. (I believe Long will
present the state of the arts)

2012, 2015: NBODY6+GPU,
NBODYo6++ + GPU

(Nitadori and Aarseth 2012, Wang 2015)

e Use GPU to the “regular” force.

e At present the fastest code available.

e The million-body problem has finally become fea-
sible.

Roughly speaking

Year N Method Architecture
1960 30 Ind. At Scalar
1970 100 Ind. At Scalar

1980 300 Neighbor Scalar
1990 3000 Neighbor Vector
2000 30000 Ind. At GRAPE
2010 100000 Neighbor GPU
2020 30000007 P3T? ?

Architecture changes every 10 years.

Trends in Top500
Again roughly speaking...

Year Speed Arch. Example

1990 3GF Vector Cray YMP
2000 5TF Scalar MPU ASCI Red
2010 3PF GPU Tianhe-1A
2020 1EF? ? ?

Architecture changes every 10 years.

Speed and Number of particles
If we compare 1990 and 2010

e Computers became 10° times faster

e N increased only by 30 or so.

The performance of current star cluster codes do not
scale well on large HPC machines.

Designs which could reach Exaflops
in 2020

e TaihuLight (SW26010): currently Top 1.

e GYOUKOU (PEZY-SC2): New Top 4.

e Tianhe-3/47 (Chinese Accelerator?): Previous Top
1.

GPU-like accelerator (Tianhe) or Heterogeneous many-
core (other two).

N-body simulation in 2020 and
beyond

® We do need combination of tree and individual
timestep.

e Currently, P°T is the only algorithm which might
work.

Theoretical calculation cost scaling
for P3T

When core is large
e per crossing time: N*/3log N (N'/? from timestep)
e per relaxation time N7/3

When core is small: We need to make O(NN) hard

binaries with triple interactions or binary-single star
encounters

e Each hard binary requires constant cost, but with
PST this cost might be IN log NV

e Total cost would be N?log N

This means that even if we reduce the global tree

step down to core crossing timescale, calculation cost
is still IN?2.

Simulation turn-around time

When core is large:

e For N crossing times, we need around N*/3 steps.
For N = 107, 10° steps.

e If we can make one timestep 1 msec (currently dif-
ficult... 10ms is doable), we can finish one run in
1 week or so.

Small core scaling is still difficult to predict...

Summary

e In the last three decades we have seen quite signif-
icant improvement on what we can do with direct
N-body simulations.

e Currently, NBODY6(4++) + GPU works great.

e To use even larger number of particle P3T scheme
with parallel treecode (on accelerators) might be
necessary.

e Need cleaner treatment of small subsystems (not
discussed much today)

e Long has been working on this. Stay tuned.

Problem of individual
timestep/neighbor scheme

——

. Basic idea of individual
timestep:

. Particles should have
the timestep just
enough to resolve their
own orbits.

What happens to the forces from short-timescale
particles to long-timescale particles?

Slide recycled from the Capri meeting

What’s happening

They are integrated in a completely wrong way!

AN AT TR

»
|

Time

e Forces do have rapidly changing components

e If the timestep is large, forces are sampled “ran-
domly” (if the orbit is not periodic)

e Much more problematic with the Hermite scheme

e Even more problematic with the neighbor scheme

Slide recycled from the Capri meeting

When does this happen?

e When the orbital timescale of particles in the core
becomes less than the timestep of typical particles
in the cluster.

e Roughly speaking: If r, < r,IN~1/3
e Just before bounce: r, ~ 7, /N < rp,N~1/3

Slide recycled from the Capri meeting

Does this really matter?

e This error is actually visible: The reason why the
energy error increases toward the core collapse.

e Reduction of timestep helps, but only as At!®

e The only way to suppress this error completely is
to reduce the timesteps of all particles to less than
the core crossing time

e Can we just let the error grow? No. With poor
energy conservation we cannot say for sure that
the calculation is “correct”.

Impact on the calculation cost

e Hopefully not so severe for normal star clusters

— the fraction of time for which the core size is
small i1s small

— Mass spectrum makes the core size larger

e Any system with central massive BH might be
problematic.

Slide recycled from the Capri meeting

“Solution”

e With P?T scheme, it is not unpractical to integrate
all stars with the timestep smaller than the core
crossing time

e Almost all calculation cost is spent by the simple
shared-timestep treecode

e Parallelization and the use of accelerators are pretty
efficient (can be done with our FDPS package)

e Currently we are working on this...

Some good news

P3T scheme can actually conserve energy better than
Hermite (Iwasawa+ 2016)

0 1000 2000 3000 4000
T

IN = 16k, down to core collapse.

Theoretical calculation cost scaling
for P3T

When core is large
e per crossing time: N4/3log N (IN'/3 from timestep

e per relaxation time N7/3

When core is small: We need to make O(NN) hard

binaries with triple interactions or binary-single star
encounters

e Each hard binary requires constant cost, but with
PST this cost might be IN log NV

e Total cost would be N?log N

This means that even if we reduce the global tree

step down to core crossing timescale, calculation cost
is still IN?2.

Simulation turn-around time

When core is large:

e For N crossing times, we need around N*/3 steps.
For N = 107, 10° steps.

e If we can make one timestep 1 msec (currently dif-
ficult... 10ms is doable), we can finish one run in
1 week or so.

Small core scaling is still difficult to predict...

FDPS

Iwasawa-+2016
e Please visit: https://github.com/FDPS/FDPS

e A Framework for Developing parallel Particle Sim-
ulation code

e FDPS offers library functions for domain decom-
position, particle exchange, interaction calculation
using tree.

e Can be used to implement pure Nbody, SPH, or
any particle simulations with two-body interactions.

e Use essentially the same algorithm as used in our

treecode implementation on K computer (GreeM,
Ishiyama, Nitadori and JM 2012).

e Runs efficiently on K, Xeon clusters or GPU clus-
ters or even on TaihuLight

