
GRAPE accelerators

Jun Makino
Center for Computational Astrophysics

and
Division Theoretical Astronomy

National Astronomical Observatory of Japan

IAU 270, Computational Star Formation, Barcelona May 31st - Jun 4th 2010

Talk structure

• Short history of GRAPE

– GRAPE machines

• GRAPE-DR

– Architecture

– Comparison with other architecture

– Development status

• Next-Generation GRAPE

• GRAPEs and Star-formation simulations

Summary

• GRAPE-DR, with programmable processors, has wider
application range than traditional GRAPEs.

• Peak speed of a card with 4 chips is 800 Gflops (DP).

• DGEMM performance 640 Gflops,
LU decomposition > 400Gflops

• Currently, 128-card, 512-chip system is up and running.

• We return to custom design with structured ASIC for the
next generation (budget limitation...)

• GRAPE-DR might be useful for star formation simulation.

Short history of GRAPE

• Basic concept

• GRAPE-1 through 6

• Software Perspective

Basic concept (As of 1988)

• With N -body simulation, almost all calculation goes to the
calculation of particle-particle interaction.

• This is true even for schemes like Barnes-Hut treecode or
FMM.

• A simple hardware which calculates the particle-particle
interaction can accelerate overall calculation.

• Original Idea: Chikada (1988)

Host
Computer

GRAPE

Time integration etc. Interaction calculation

Chikada’s idea (1988)

• Hardwired pipeline for force calculation (similar to Delft
DMDP)

• Hybrid Architecture (things other than force calculation
done elsewhere)

GRAPE-1 to GRAPE-6

GRAPE-1: 1989, 308Mflops

GRAPE-4: 1995, 1.08Tflops

GRAPE-6: 2002, 64Tflops

Performance history

Since 1995

(GRAPE-4),

GRAPE has been

faster than

general-purpose

computers.

Development cost

was around 1/100.

Science on GRAPEs

• Pure N -body

– Planetary formation (Kokubo, Ida, ...)

– Star clusters (JM, Baumgardt, Portegies

Zwart, Hurley, ...)

– Galactic Dynamics (Athanassoula, Fujii, ...)

– Galaxies with central BH (JM, Iwasawa,...)

– Cosmology (Fukushige, Yoshikawa)

• SPH

– Galaxy Formation (Steinmetz, Susa, Saitoh)

– Star formation (Klessen)

Advantage of GRAPEs

• Planetary formation, Star clusters: N2 with

individual timestep

– GRAPE very efficient

– Difficult to use large parallel machine

• Galactic Dynamics, Cosmology: Treecode

– GRAPE okay

– large parallel machines work fine

• Galaxy Formation, Star formation: SPH

– GRAPE does gravity only

– Difficult to use large parallel machine

efficiently?

“Problem” with GRAPE approach

• Chip development cost has become too high.

Year Machine Chip initial cost process

1992 GRAPE-4 200K$ 1µm

1997 GRAPE-6 1M$ 250nm

2004 GRAPE-DR 4M$ 90nm

2010? GDR2? > 10M$ 45nm?

Initial cost should be 1/4 or less of the total budget.

How we can continue?

Next-Generation GRAPE
— GRAPE-DR

• New architecture — wider application range than

previous GRAPEs

• primarily to get funded

• No force pipeline. SIMD programmable processor

Processor architecture

GP Reg
 32W

Local Mem
 256W

T Reg

+

x

M
ultiplexor

M
ultiplexor

INT
ALU

SHMEM
Port

SHMEM
Port

A

B

Mask(M)Reg

PEID
BBID

• Float Mult

• Float add/sub

• Integer ALU

• 32-word registers

• 256-word memory

• communication

port

Chip architecture

B
roadcast M

em
ory

Broadcast
same data to
all PEs

Control Processor

(in FPGA chip)

Memory Write Packet
Instruction

Broadcast Block 0

Result output port

External MemoryHost Computer

SING Chip

Result

Result Reduction and Output
Network

any processor
can write (one
at a time

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

• 32 PEs organized to
“broadcast block” (BB)

• BB has shared memory.
Various reduction
operation can be applied
to the output from BBs
using reduction tree.

• Input data is broadcasted
to all BBs.

Computation Model

Parallel evaluation of

Ri =
∑
j

f(xi, yj)

• parallel over both i and j

• yj may be omitted (trivial parallelism)

• Si,j =
∑
k

f(xi,k, yk,j) also possible

(matrix multiplication)

The Chip

Sample chip delivered May 2006

90nm TSMC, Worst case 65W@500MHz

PE Layout

Black: Local Memory

Red: Reg. File

Orange: FMUL

Green: FADD

Blue: IALU

0.7mm by 0.7mm

800K transistors

0.13W@500MHz

1Gflops/512Mflops

peak (SP/DP)

Processor board

PCIe x16 (Gen 1) interface

Altera Arria GX as DRAM

controller/communication

interface

• Around 200W power

consumption

• Not quite running at

500MHz yet...

(FPGA design not

optimized yet)

• 900Gflops DP peak

(450MHz clock)

• Available from K&F

Computing Research

(www.kfcr.jp)

GRAPE-DR cluster system

GRAPE-DR cluster system

Sorry, this is MareNostrum

GRAPE-DR cluster system

GRAPE-DR cluster system

• 128-node, 128-card system (105TF theoretical

peak @ 400MHz)

• Linpack measured: 360 Gflops/node

• Gravity code: 340Gflops/chip

• Host computer: Intel Core i7+X58 chipset, 12GB

memory

• network: x4 DDR Infiniband

• plan to expand to 384-node system.

Software Environment

• Assembly Language

• Kernel libraries

– matrix multiplication

∗ BLAS, LAPACK

– Particle-Particle interaction

• Compiler Language

• OpenMP-like interface

Idea based on PGDL (Hamada, Nakasato)

— pipeline generator for FPGA

Compiler language example

Nakasato (2008), based on LLVM.

VARI xi, yi, zi;
VARJ xj, yj, zj, mj;
VARF fx, fy, fz;
dx=xi-xj;
dy=yi-yj;
dz=zi-zj;
r2= dx*dx+dy*dy+dz*dz;
rinv = rsqrt(r2);
mr3inv = rinv*rinv*rinv*mj;
fx+= mr3inv*dx;
fy+= mr3inv*dy;
fz+= mr3inv*dz;

Driver functions

Generated from the description in the previous slide

int SING_send_j_particle(struct grape_j_particle_struct *jp,
int index_in_EM);

int SING_send_i_particle(struct grape_i_particle_struct *ip,
int n);

int SING_get_result(struct grape_result_struct *rp);
void SING_grape_init();
int SING_grape_run(int n);

OpenMP-like compiler

Goose compiler (Kawai 2009)

#pragma goose parallel for icnt(i) jcnt(j) res (a[i][0..2])

for (i = 0; i < ni; i++) {

for (j = 0; j < nj; j++) {

double r2 = eps2[i];

for (k = 0; k < 3; k++) dx[k] = x[j][k] - x[i][k];

for (k = 0; k < 3; k++) r2 += dx[k]*dx[k];

rinv = rsqrt(r2);

mf = m[j]*rinv*rinv*rinv;

for (k = 0; k < 3; k++) a[i][k] += mf * dx[k];

}

}

Translated to assembly language and API calls.

Performance and Tuning example

• HPL (LU-decomposition)

• Gravity

Based on the work by H. Koike (Thesis work)

Matrix-multiplication performance

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700
 750
 800
 850
 900

 0 5000 10000 15000 20000 25000 30000 35000

S
pe

ed
 [G

Fl
op

s]

Matrix size M=N

overlap
nooverlap

peak

M=N, K=2048, 640 Gflops

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 0 5000 10000 15000 20000 25000 30000 35000

S
pe

ed
 [G

Fl
op

s]
Matrix size M

overlap
nooverlap

peak

N=K=2048, 450 Gflops

FASTEST single-chip and single-card performance on

the planet!

LU-decomposition performance

N

G
flo

ps

Speed in Gflops as

function of Matrix size

430 Gflops (54% of

theoretical peak) for

N=50K

LU-decomposition tuning

• Almost every previously known techniques

– except for the concurrent use of CPU and GDR (we use
GDR for column factorization as well...)

– right-looking form

– TRSM converted to GEMM

• Several other “new” techniques

– use row-major order for fast O(N2) operations

– Transpose matrix during recursive column
decomposition

– Use recursive scheme for TRSM (calculation of L−1)

HPL (parallel LU)

• Everything done for single-node LU-decomposition

• Both column- and row-wise communication hidden

• TRSM further modified: calculate UT −1 instead of T −1U

• More or less working, tuning still necessary

N=240K, 64 nodes: 23Tflops/25KW(est.)

920Mflops/W: Better than #1 in Green500 by 25%.

Gravity kernel performance

(Performance of individual timestep code not much

different)

 10

 100

 1000

 1000 10000 100000 1e+06

S
pe

ed
 [G

Fl
op

s]

N

Assembly code (which I wrote) is not very optimized

yet... Should reach at least 600 Gflops after rewrite.

Comparison with GPGPU
Pros:

• Significantly better silicon usage: 512PEs with 90nm
40% of the peak DP speed of Tesla C2050 with 1/3 clock
and 1/8 transistors

factor 2 better performance per watt

• Designed for scientific applications
reduction, small communication overhead, etc

Cons:

• Higher cost per silicon area...
(small production quantity)

• Longer product cycle... 5 years vs 1-2 years

Good implementations of N -body code on GPGPU are there
(Hamada, Nitadori, ...)

GPGPU performance for N -body
simulation

• x10 compared to a good SSE code for a N2 code

with shared timestep.

• ∼ x5 for production-level algorithms.

• ∼ x3 or less for the same price (if you buy

GTX295, not Tesla).

• < x2 if you are not using Keigo Nitadori’s code.

Keigo Nitadori(discussing the use of GPU)

Next-Generation GRAPE

Question:

Any reason to continue hardware development?

• GPUs are fast, and getting faster

• FPGAs are also growing in size and speed

• Custom ASICs practically impossible to make

Next-Generation GRAPE

Question:

Any reason to continue hardware development?

• GPUs are fast, and getting faster

• FPGAs are also growing in size and speed

• Custom ASICs practically impossible to make

Answer?

• GPU speed improvement might have slowed down

• FPGAs are becoming far too expensive

• Power consumption might become most critical

• Somewhat cheaper way to make custom chips

GPU speed improvement slowing
down?

Clear “slowing down”

after 2006 (after G80)

Reason: shift to more
general-purpose
architecture

Discrete GPU market is
eaten up by unified
chipsets and unified
CPU+GPU

But: HPC market is not
large enough to support
complex chip development

FPGA

“Field Programmable Gate Array”

• “Programmable” hardware

• “Future of computing” for the last two decades....

• Telecommunication market needs: large and fast

chips (very expensive)

Power Consumption

1kW · 1 year ∼ 1000 USD

You (or your institute) might be paying more money

for electricity than for hardware.

Special-purpose hardware is quite energy efficient.

Chip Design rule Gflops/W

GRAPE-7(FPGA) 65nm > 20

GRAPE-DR 90nm 4

GRAPE-6 250nm 1.5

Tesla C2050 40nm < 2

Opteron 6128 45nm < 1.2

Structured ASIC

• Something between FPGA and ASIC

• eASIC: 90nm (Fujitsu) and 45nm (Chartered)

products.

• Compared to FPGA:

– 3x size

– 1/10 chip unit price

– non-zero initial cost

• Compared to ASIC:

– 1/10 size and 1/2 clock speed

– 1/3 chip unit price

– 1/100 initial cost (> 10M USD vs ∼ 100K)

GRAPEs with eASIC

• Completed an experimental design of a

programmable processor for quadruple-precision

arithmetic. 6PEs in nominal 2.5Mgates.

• Started designing low-accuracy GRAPE hardware

with 7.4Mgates chip.

Summary of planned specs:

• around 8-bit relative precision

• 100-200 pipelines, 300-400 MHz, 2-5Tflops/chip

• small power consumption: single PCIe card can

house 4 chips (10 Tflops, 50W in total)

Will this be competitive?

Rule of thumb for a special-purpose computer

project:

Price-performance goal should be more than 100

times better than that of a PC available when you

start the project.

— x 10 for 5 year development time

— x 10 for 5 year lifetime

Compared to CPU: Okay

Compared to GPU: ??? (Okay for electricity)

Will this be competitive?

Rule of thumb for a special-purpose computer

project:

Price-performance goal should be more than 100

times better than that of a PC available when you

start the project.

— x 10 for 5 year development time

— x 10 for 5 year lifetime

Compared to CPU: Okay

Compared to GPU: ??? (Okay for electricity)

Will GPUs exist 10 years from now?

GRAPEs and Star-formation
simulations

SPH simulation with GRAPE

• Early efforts — Steinmetz, Klessen, Susa

– Let GRAPE do gravity

– SPH and all other physics on host

– Speedup rather limited: Gravity is dominant,

but not something like 99.99%...

• Possibility with GRAPE-DR

– Do SPH interaction (and other physics) on

GRAPE-DR (and GPU and other

accelerators)

Practical problems with SPH on
accelerators

• Neighbor list

– neighbor lists of different particles are all

different

– Hopeless with an SIMD architecture with

hundreds of cores...

• Individual timestep

– Only a small fraction of particles are

integrated with small timesteps

– reduce the total calculation cost, but reduces

parallelism...

Neighbor list

• *If* the accelerator is fast enough, we can use a

shared neighbor list to reduce the communication

cost.

• Same technique as that we use with treecode

(Barnes 89, JM 90).

• roughly 10x more computation to reduce

communication by a factor of 10.

Individual timestep

• Wadsley et al. (2004): Particles with relatively

small timesteps dominate the cost.

(But: If you resolve high-density gas, there

appear small number of particles with very short

timestep)

• With sink particles, there is an artificial lower

limit for the timestep.

Traditional individual timestep might be an overkill.

Something much simpler might be enough.

Summary

• GRAPE-DR, with programmable processors, has wider
application range than traditional GRAPEs.

• Peak speed of a card with 4 chips is 800 Gflops (DP).

• DGEMM performance 640 Gflops,
LU decomposition > 400Gflops

• Currently, 128-card, 512-chip system is up and running.

• We return to custom design with structured ASIC for the
next generation (budget limitation...)

• GRAPE-DR might be useful for star formation simulation.

