ACS2: A “yet another” toolbox for
stellar dynamics

Jun Makino
Dec9, 2020 Internal seminar



Talk overview

e What is a toolbox?
e \What are available?
e Why yet another toolbox?

e Current status



What is a toolbox?

For numerical experiments, a set of useful programs to perform exper-
iments.

e prepare initial conditions
e perform numerical integration

e display/analyze results



What are available?

e NEMO
o (Starlab)
o AMUSE
o ACS



NEMO

https://teuben.github.io/nemo/

e Development started by Barnes and Hut, around 1985.
e Currently maintained by Peter Teuben
e Contains many, many useful programs,

— Initial models: Plummer, Hernquist, King. Also contain inter-
faces to GalactlCS

— Many utilities to modify snapshot files: rotate, move, scale, add,

— Integrator: tree, interfaces to NBODYX, gyrfalcON
— Visualization/analysis: snapplot, ginemo, ...



Basic structure of NEMO

e Command-line interface: get[id]param functions (not Gnu getopt...)
e Nbody snapshot file format built on “structured file”

e Flexible processing of particle data using bodytrans library (using
on-the-fly compiling and dynamic loading)



What you can do: some example

% mkplummer out=pllk.snap nbody=1024 # make a plummer model with
#1024 particles
% tst # show the file content
% snapplot plik.snap
% snapplot pllk.snap xvar=x yvar="vx*vx" # vx*vx is compiled
# at runtime



“Problems” with NEMO

e Writing NEMO programs is not easy. CLI and File I/O are well de-

signed, but both require fairly long and complex user code. (Same
is true for Gnu getopt)

e File 1/O is limited to predefined data structure (such as Nbody or
SPH. No simple way to add new variable to these data, or to let old
programs talk to new data structure



StarLab

e Started as the replacement of NBODY3/4/5/6 (collisional N-body
code). Initially by Hut and JM, McMillan and Portegies Zwart joined.
Used with GRAPE-4, 6.

Written in C++

e File structure changed to text-base, particle-wise structure

I/O library can handle “unknown” data, but as array of strings.
e Rely on NEMO for setup/analysis
e Sort of superseded by AMUSE.



AMUSE

https://amusecode.github.io/

e The outcome of MODEST (Modeling Dense Stellar Systems) col-
laboration, started in 20007

e Portegies Zwart and McMillan

e | must say | do not know much about the inside of AMUSE. | only
know it is hard to install..

e Python based.



ACS

The Art of Computational Science
http://www.artcompsci.org

e Hut and JM started in somewhere in 1999-2002

o Effort to write up everything you need to know to do research in
stellar dynamics

Have not dealt reached that far...

Ruby based

e Fairly fancy CLI and File 1/O, designed to remove everything we did
not like about NEMO and Starlab.



CLI example NEMO mkplummer

string defv[] = { /* DEFAULT INPUT PARAMETERS */
"nbody=777\n Number of particles",

"mfrac=0.999\n Mass fraction used of Plummer distribution",
NULL,

¥6id nemo_main(void)
int nbody;
real mfrac;
Bbody = getiparam("nbody");

mfrac = getdparam("mfrac");

This is actually much simpler than using getopt.



The getopt way

void usage()

fprintf(stderr," -n: Number of particles\n");

fprintf (stderr," -m: Mass fraction used of Plummer distribution\n");
}
int main(int argc, char * argv[])
{

int ch;

int nbody;

double mfrac;
static struct option longopts[] = {

{ "nbody", optional_argument, NULL, ’n’ },
{"mfrac", optional_argument, NULL, ’m’},
{ NULL, 0, NULL, 0 }

s
mfrac=0.999;
while((ch=getopt_long(argc,argv,"m:n:",longopts, NULL))'= -1){
fprintf (stderr,"optchar = %c optarg=)s\n", ch,optarg);
switch (ch) {
case ’n’: nbody= atoi(optarg); break;
case ’m’: mfrac= atof(optarg); break;
default:break;



options_text= <<-END

Short name: -n
Long name:

Value type:
Default value:
Variable name:
Description:

Long description:

The ACS way

--n_particles

int

1

n

Number of particles

Number of particles in a realization of Plummer’s Model.

Each particles is drawn at random from the Plummer distribution,
and therefore there are no correlations between the particles.

Short name:
Long name:
Value type:
Default value:
Description:
Variable name:

-m
--mfrac

real

0.999

Mass fraction used of Plummer distribution
mfrac

Long description: Mass fraction used of Plummer distribution

END

c=parse_command_line(options_text, true)

c.nbody
c.mfrac



Comparison

e With gnu getopt, one option character and its associated variable
appears in five different places.

e With NEMO getparam only in two places.

e With ACS parse_command_line in just one place. Also, it allows very
long (man page like) documentation.

e ACS relies on dynamic nature of Ruby, where the class for options
is created at runtime.

e For data structure, dynamic class creation is used. Thus, any ACS
program can read/write snapshot data which contains “new” vari-
ables, and plotting/analysis programs can use them.



Why yet another toolbox?

e ACS is (in my opinion...) reasonably designed and easy to use and
easy to write new programs.

e Major problem is the performance penalty of Ruby. We hoped (in
2004 or so) that some reasonable compiler for Ruby would appeatr.

e Real compiler is not there yet... Ruby 3.0 will feature JIT compiler
but its expected performance would not match native C/C++

e Crystal, a new compiler language, inspired by Ruby, seemed to be
promising.

e So | decided to “modernize” ACS using Crystal.

e FDPS can be called from Crystal. So we can write MPI parallel
programs, not only for time integration but also for anslysis, using
Crystal.



Crystal CLI
optionstr = <<-END

Description: Plummer’s Model Builder
Short name: -n

Long name: --n_particles

Value type: int

Default value: 1

Variable name: n )
Description: Number of particles

Long description:
Number of particles in a realization of Plummer’s Model.

Each particles is drawn at random from the Plummer distribution,
and therefore there are no correlations between the particles.

Short name: -m

Long name: --mfrac

Value type: real

Default value: 0.999 ) ) ) )
Description: Mass fraction used of Plummer distribution
Variable name; mfrac

Long description: Mass fraction used of Plummer distribution

END
clop_init(__LINE__, __

c=CLOP.new(optionstr,ARGV)

FILE__, __DIR__, "optionstr")

The text part is the same as that for ACS. But now implemented using
YAML. File 1O is also based on YAML.



Current status

e Basic tools (CLI, File 10, dynamic evaluation) are there
e Can work with FDPS (Both MPI/OpenMP)

e source code at: https://github.com/jmakino/numerical-calculation-
with-crystal

e “Documentation” at http://jun-makino.sakura.ne.jp/articles/intro_crystal/tace.html
(Sorry, curently only in Japanese).

e Need more compact documents for basic tools and tutorials.

e Will add more functions/documents.


https://github.com/jmakino/numerical-calculation-with-crystal
https://github.com/jmakino/numerical-calculation-with-crystal
http://jun-makino.sakura.ne.jp/articles/intro_crystal/face.html

