
Debugging the performance problems of
FDPS on Supercomputer Fugaku

Jun Makino

Internal Seminar Sept 22, 2021

Talk plan

1. Problems of FDPS-based programs on Fugaku

2. Result of (somewhat) detailed measurements

3. Details of problems and solutions

4. Current status

5. Summary

Problems of FDPS-based programs
on Fugaku

There seem to be two problems

• Runs very slowly on Fugaku

• Stops seemingly randomly after relatively small number of timesteps
on Fugaku

In today’s talk I’ll focus on the first problem, since the code I used to
evaluate the behavior of Fugaku turned out to run stably for hundreds of
thousands of steps.

Motivation
Understand why the performance of FDPS-based program (for example
GPLUM) is not very good on Fugaku.

• GPLUM performance on Cray XC40 (Skylake): ∼ 20 sec with 1040 cores
and 106 particles, 1 Kepler time (∼ 400 steps) (largest number of cores
tested)

• on Fugaku: ∼ 15 sec with 64 nodes (longer for more nodes)

• Not that Fugaku is slow, but we want to improve the calculation speed
using more nodes.

Measurement/Debugging setup

• Code to measure: nbody-with-center
(https://github.com/jmakino/nbody-with-center) My version of planetary
ring code. Now uses cylindrical coordinate of FDPS.

• To use simple code which I fully understand.

• Number of nodes: 1k-4k

• Number of Particles: 2-200M

• θ = 0.5, ring width=0.1, domain decomposition/4steps

First measurement
Calculation time per one timestep
Item time(ms)
Total 105
Domain Decomposition 1.5
Exchange Particle 10.5
Force calculation 54
Others 38

• Everything looks verrrry sloooow. (we are using an extremely large
number of cores though: around 50k)

• This is measurement done in the caller of FDPS functions, not in FDPS.
Should use the internal timeprofile class as well.

Changes made at this stage

• Exchange LET communication mode changed to P2P EXACT

• interaction calculation function SIMDized (not using PIKG yet, though).

External times
Item time(ms)
Total 59
Domain Decomposition 1.7
Exchange Particle 8.4
Force calculation 44
Others 4.6

Internal times
Item time(ms)
Domain Decomposition 3.6
Exchange Particle 22
Local/Global tree 9.4/9.5
Calc force 3.2
LET const/comm 6.5/15

Now everything except calc force is slow...

Details of problems and solutions

• Exchange Particle

• LET construction/communication

• Tree construction

• Domain Decomposition

Exchange Particle

• This is a ring code with cylindrical coordinates

• So an MPI process need to communicate only with its neighbor pro-
cesses

• However, it actually communicated with all nodes in θ direction

• Turned out that the exchange particle function was not changed ap-
propriately to handle periodic boundary. (Actually, a single algorithm
could handle both cases, but current one is not that one)

After the modification of a single line of code, time for exchange particle
changed:

22ms → 2.2ms

LET construction/communication

• P2P EXACT algorithm is not good for ring.

• Switched to P2P FAST algorithm. Error is slightly larger but hopefully
acceptable.

LET construction time: 6.5ms → 3.5ms
LET communication time: 15ms → 0.3ms

Tree construction

• The parallel merge sort algorithm used in FDPS turned out to be very
slow on Fugaku.

• First, I just activated the flag to use single-core std::sort.

Local tree construction time: 9.4ms → 0.56ms

• I also implemented parallel sample sort

Local tree construction time: 0.56ms → 0.44ms

(Much larger speedup for large N)

Performance of parallel sample sort

Wallclock time to sort structs of size
160bytes using 64-bit keys.

The dashed curve with filled
triangles is the time for std::sort.
Filled squares, pentagons, open
triangles, squares and pentagons are
the results of samplesort bodies
called with 2, 4, 12, 24, 48 threads.

code available at:
https://github.com/jmakino/sortlib

Domain Decomposition
After inserting lots of barriers and measurement functions, it turned out

• Collection of sample particles (implemented using MPI AllgatherV) is
very fast

• Actual calculation (done in rank 0) is not very fast

• Broadcast of calculated domains (using MPI Bcast) is incredibly slow,
something like 40ms/call. Seemingly a performance bug of MPI itself.

Current hack: Avoid the use of MPI Bcast and do redundant calculations
on all nodes. Also, use parallel sort and OpenMP parallelization whenever
appropriate

Domain Decomposition time: 8ms → 0.4ms

Fugaku MPI Bcast performance

1024 nodes, 48 threads/process

6 words= sending structs consisting
of 6 double-precision words

With a reasonalbe MPI
implementation, sending N structs
should take the time same as that for
sending 6N double-precision words.

It takes actually much, much more
time....

Current Status
Item time(ms)
Total 7.2
Domain Decomposition 0.41
Exchange Particle 0.78
Force calculation 5.8

make tree 1
make LETs 1.6
exchange LETs 0.4
treewalk 0.44
force kernel 1.57

Others 0.1

Current performance for larger N

N time per step(ms)
106 7.2
107 16.6
108 133.2

(Un)expected Findings

• When carefully used, communication on Fugaku is pretty fast.

• ”Carefully” means: measure everything and work around bugs, and
also avoid communicating with many processes (large overhead)

• Intra-node parallel calculation can sometimes be surprizingly slow.

• Even so, single-core parts can easily form bottlenecks.

Things to do

• Domain decomposition: Should switch to O(p1/3) algorithm
from current O(p) algorithm (p: number of processes)

• Exchange Particles: “find particle” part seems to be still
slow

• Tree construction: time for parts other than sort can be im-
proved

• LET construction: tree walk is still very slow.

• force calculation: should use PIKG or hand-optimized ker-
nel

Summary

• Performance of FDPS on modestly large number of nodes (1024) of Fu-
gaku was investigated for a “small” number of particles (2M).

• There turned out to be many inefficient parts not found previously,
mainly because large-number-of-nodes, small-number-of-particles cal-
culation has not been tried (or investigated deeply)

• So far, wall clock time per timestep has been reduced from 59ms (after
the force kernel is SIMDized) to 7.2ms.

• I hope to make this version available as FDPS 7.1 soon.

• I believe further improvement, down to 3-4ms, should be possible.

