
A64fx上での高速並列ソート

牧野淳一郎

富岳計算宇宙惑星・計算資源利用に関する課題内ワークショップ
2022//6/28

概要

• A64fx 上でのソート (キーが 128ビットくらいでもうちょっと大
きい構造体をソート)が並列でそこそこ速くなるような実装を書
いた。

• スレッド並列化はサンプルソート、スレッド内はサンプルソート
とSIMD化されたクィックソートとバイトニックの組合せ。

• そこそこ性能でるようになった。論文になってる他のよりは速い。

• FDPSにもいれる予定である。

Talk plan

1. Parallel sort

2. Scalability of parallel sort

3. Theoretically better approach

4. Our implementation

5. Parallel quicksort and bitonic sort

6. Performance

7. Summary

Parallel sort

• In this talk, I discuss intra-node parallel sort.

• The performance of std::sort is pretty good for single-core sort, but
we need multi-core sort (for FDPS, in particular on A64fx).

• C++17 supports “Parallel STL” which you can use on GCC9 or later, and
of course on icc, but not on Fujitsu C++ compiler for A64fx.

Scalability of parallel sort

A fast vectorized sorting
implementation based on the
ARM scalable vector
extension (SVE), B. Bramas,
2022, Figure 7

Sorting FP64 numbers. 13
times faster than single-core
with 16, 32, and 48 threads.

Algorithm: Parallel
Quicksort.

Parallel Quicksort

At each stage, the array is
divided to (roughly) two
halves.

1, 2, 4, ... threads can be
used at each stage.

Speedup factor is limited by first few stages which are not well parallelized.
Even if we have 20 stages (106 elements) and infinitely many cores, speedup
will be limited to 10(= 20/(1 + 0.5 + 0.25 + ...)
Parallel merge sort suffers the same problem.

Theoretically better approach

• Parallel sample sort

• Parallel merge sort (not discussed today)

Parallel sample sort

collect small sample, sort it and determine partition points

partition divided arrays and send them to other threads

sort each array

Sample sort: Generalization
of quicksort

• partition to n parts
(n > 2)

• First stage: n = the
number of threads

• Use sampling to
determine partition
points

Parallel version: ALL steps except for the sorting of small sample array are
parallelized

Our implementation

• https://github.com/jmakino/sortlib

• Use key-index array for sort.

• Fast n-way partitioning using heap

• Sample sort also for single-core sort

Key-index sort

• What we want to sort: particles, sort key: Morton key

• Sorting particles directly would cause lots of memory copy

• Instead, first create an array of struct of key + original array index, sort
it according to key and reorder the particle array using the sorted index.

• Parallel reordering requires two loops (reorder and copy back)

Fast n-way partitioning using heap
For each element, we need to determine which of n partitions it should go
to.

Serial

0 1 2
Tree

0

1 2

Heap

...

0
1 2
3 4 5 6
7 8 9 10 11 12 13

• Naive implementation:
O(n) operations.

• Tree-based
implementation:
O(logn) operations.

• Heap-based: O(logn)
but no pointer access.

Keep tree data in 1d array. Use loop structure to access tree.

Code (not quite optimal...)
bool unfilled = false;

for(ilevel=0;ilevel <nlevel; ilevel++){

if (ipart > n-1) {

unfilled = true;

}else{

int inc = data <= tree[ipart]? 0:1;

ipart = ipart*2+1+inc;

}

}

int offset = (1<<nlevel)-1;

if (unfilled){

offset = offset -n -1;

}

return ipart - offset;

Sample sort also for single-core sort

• Our initial implementation used std::sort for single-core sort

• It turned out that parallel performance degrades for large array.

• The bandwidth of the main memory for the quicksort used in std::sort

limits the parallel speedup.

• For single-core sort part, when the array is large, first divide it to smaller
blocks (size 16k) using samplesort algorithm, so that new blocks fit to
L2 cache (and to L1 cache after a few steps)

SIMD Quicksort

• Sorting is used in many, many applications

• We use sorting to construct trees in FDPS. This is actually the most
time-consuming part of the calculation other than tree traversal and
interaction calculation.

• However, what are available are not quite the fastest.

– std::sort is a sequential quicksort (actually an introsort, a combina-
tion of quicksort and heapsort)

– Parallel sorts are not quite fast

– SIMD instructions are not used

Aren’t there existing implementations?
• There are many papers on implementation of fast sorting algorithms

using SSE, AVX, AVX2, AVX512 and even SVE.

• However, almost all of them cannot be used as a replacement of std::sort.

– They just sort 32-bit integers
– What we want to do is to sort, for example, particles using the Mor-

ton key.
– Actually, with usual interface of std::sort [or qsort(3)], we cannot

use SIMD sort. They only supply a comparison function.

• We can still make generic interface if we provide a function to generate
integer keys from data to be sorted (my samplesortlib https://github.

com/jmakino/sortlib uses this interface)

https://github.com/jmakino/sortlib
https://github.com/jmakino/sortlib

Basics of Quicksort

1. We have array a with n elements.

2. Pick one “pivot” value from these n elements

3. divide a into two (or three) parts. The left part contains all values
smaller than pivot, the right part larger than, and the middle part equal
to.

4. Apply steps 2 and 3 recursively to left and right part. If the number of
element is one, do nothing.

An example

input: 2 5 1 4 9 5 2 1 6 1

pivot: 2: 1 1 1 2 2 5 4 9 5 6

pivot 1: 1 1 1, (2 2 part finished) pivot:5 4 5 5 9 6

(1 1 1 part finished) pivot 9 : 6 9

result: 1 1 1 2 2 4 5 5 6 9

Example Source code
(not quite sure why and how this works, though)

void sort_int64_array(int64_t* r, int lo, int up)

{

int i, j;

int64_t tempr;

while (up>lo) {

i = lo;

j = up;

tempr = r[lo];

/*** Split data in two ***/

while (i<j) {

for (; r[j]> tempr; j--);

for (r[i]=r[j]; i<j && r[i]<=tempr; i++);

r[j] = r[i];

}

r[i] = tempr;

Example Source code(continued)

/*** Sort recursively, the smallest first ***/

if (i-lo < up-i) {

sort_int64_array(r,lo,i-1); lo = i+1;

}else{

sort_int64_array(r,i+1,up); up = i-1;

}

}

}

This code requires no additional memory (might have been important in
1960s, when the main memories of computers were small

SIMD partition algorithm

Here, we start from a simple algorithm
which require additional working memory.

2 5 1 4 9 5 2 1 6 1

1 1 1 6 5 9 4 5

1. We have array a with n elements.

2. Pick one “pivot” value from these n elements

3. prepare an empty array b of size n.

4. For each element of array a, if it is smaller than the pivot, put it in the
leftmost free location in b. If larger, rightmost. If equal, do nothing

5. copy left and right parts of array be back to array a.

6. Apply steps 2-5 recursively to the left and right part of array a.

SIMD partition algorithm(continued)
We can use SIMD instructions to implement the algorithm described in the
previous slide. Within an SIMD word,

1. Mark values less than the pivot

2. Move these values to the left side (in a separate SIMD word)

3. Mark values larger than the pivot

4. Move these values to the right side (in yet another separate SIMD word)

5. copy smaller values to leftmost free locations of array b

6. copy larger values to rightmost free locations of array b

All steps can be done using SIMD instructions

Current implementation with SVE
https://github.com/jmakino/simdsort

for(int i8=0;i8<n;i8+=nsve){

svbool_t pmask= svwhilelt_b64(i8,n);

svint64_t val =svld1_s64(pmask, work+i8);

svbool_t maskl = svcmpgt_s64(pmask, pivotv,val);

svbool_t masku = svcmpgt_s64(pmask, val, pivotv);

int dl = svcntp_b64(pmask, maskl);

int dh = svcntp_b64(pmask, masku);

svst1_s64(pmask, data+l+1, svcompact_s64(maskl, val));

svbool_t maskustore = svwhilelt_b64(0,dh);

svst1_s64(maskustore, data+h-dh, svcompact_s64(masku, val));

l+=dl;

h-=dh;

}

https://github.com/jmakino/simdsort

Remarks

• The size of array (in particular during recursion) is not always an inte-
ger multiple of the SIMD width. Therefore we need to take care of the
residual part. With SVE this can be done through the use of mask.

• SVE has very rich set of opertions and thus the code looks simple and
runs fairly efficiently.

• Actual code is for three 64-bit int values and thus a bit complicated.

Bitonic sort

• One of “sorting networks” — Can be implemented with SIMD instruc-
tions without any conditional branch.

• Calculation cost: O(n(logn)2))

Bitonic sort cont’d

Sorting network (left) and data move within two SIMD registers(right)

Performance
Size of test data struct: 160 bytes, sort key size: 64 bits (128 bits also
implemented). 1M elements
A64fx performance

threads time(s)
1(std::sort) 0.34

2 0.138
4 0.081
6 0.063
8 0.047

12 0.041
24 0.019
36 0.013
48 0.011

Xeon Gold 6140 performance (cplab0)
parallel stl samplesort

threads time(s) time(s)
1(std::sort) 0.172 0.172

2 0.180 0.102
4 0.095 0.056
9 0.039 0.031
18 0.027 0.025
36 0.023 0.020

Performance

• On A64fx, speedup is observed up to 48 threads. The sSpeedup factor
for 48 threads is around 30.

• On Xeon, even with 36 threads the sppeedup factor is around 8, but
generally faster than parallel STL.

• Single-core performance of A64fx is one half of that of Xeon.

• A rather rare example that A64fx is actually faster than Xeon for non-
trivial parallel operation.

Summary

• A64fx 上でのソート (キーが 128ビットくらいでもうちょっと大きい構造体を
ソート)が並列でそこそこ速くなるような実装を書いた。

• スレッド並列化はサンプルソート、スレッド内はサンプルソートとSIMD化さ
れたクィックソートとバイトニックの組合せ。

• そこそこ性能でるようになった。論文になってる他のよりは速い。

• FDPSにもいれる予定である。

