National Supercomputer Projects in Japan

Jun Makino TiTech

Mini-workshop on New Mathematical Techniques for High Performance Computing. Jan 16, 2012, TiTech

Talk Structure

- National Supercomputer Projects
- The "K" computer
- Post-petascale project

National Supercomputer Projects

• MITI

- Super-high-performance computer (1966-75?)
- High-speed computing system (1981-89)
- Fifth generation (1982-91)
- RWCP (1992-2001)
- MEXT
 - Numerical Wind Tunnel (?-1993)
 - CP-PACS (1992-96)
 - Earth Simulator (-2002)
 - The K Computer (2006-2012)

The level of success

High-speed computing system	bad
Fifth Generation	bad
RWCP	bad
NWT	Very good
CP-PACS	Good
\mathbf{ES}	fairly good
Κ	??

NWT and CP-PACS have commercial offsprings: VPP500, SR-2201 $\,$

Characteristics of failed and succeeded projects

- NWT, CP-PACS
 - Single science goal
 - Single person as the leader (Miyoshi, Iwasaki)
- Other projects
 - General Purpose
 - No single clear leader
 - Driven by politicians/bureaucrats

The case of K computer

It is certainly not a complete failure, but has numerous problems.

Rough time sequence

- 2004: Discussion started in the working group for computational science, committee for information science and technology, MEXT.
- 2005: Interim report
 - Combines the requests from eight fields (at least formally)
 - Vector 2PF, Scalar parallel4PF, Accelerator 20PF
- 2006: Design competition organized

Time sequence continued

- 2005: Evaluation by CSTP (Council for Science and Technology) Target performance and many other details change
- Early 2006: Watanabe (from NEC) became the head of the project.
- Summer 2007: System architecture determined. Vector + Scalar
- Spring 2009: NEC (Vector) dropped out
- Oct 2010 Prototype machine appeared in Top 500
- June 2011Top 1
- Nov 2011 Keeps Top 1

Problems with K project

- The target of the project was discussed in WG, but not clearly defined.
- Project started without clear single goal
- Performance target changed many times
- Architecture plan also changed several times
- One of the vendors dropped out (very exceptional in Japan)

Why this happened?

The WG discussion on the target

- This implies that the discussion was just to make up reasons to explain why the development of a supercomputer was important. The conclusion, its importance, was predetermined.
- In the case of NWT and CP-PACS, the target was clear right from the beginning
- Discussion in the WG resulted in: include all requests from all fields, but silently drop things which are difficult

Why this happened? (2)

Performance target changed many times

- Simply because the first performance target was way too low for the budget size
- The performance target was low because it was based on the predictions of vendors (so called "the three companies")
- The predictions of the vendors was low because their product line had become obsolete

In short,

Architecture design and development style are both wrong

Outcome: the vendor for vector processor dropped

Why the development style was wrong

- Probably because the planners wanted to follow the "success" in 70s and 80s
 - Supercomputers drives semiconductor development
 - With superior manufacturing technology, mak better product than US ones
- Reality
 - $-\mathop{\rm Smart}$ phones drive semiconductor technol-
 - Japanese semiconductor industry was about to vanish

Summary for K

- As the development project:
 - Too low goals
 - Even low goals were difficult or impossible to achieve due to outdated approach
- Basic reason: the (implicit) goal was to start a project to develop Japanese supercomputer, without the analysis of the if the outcome is useful/competitive.

Japanese Exascale Project

- Unfortunately, follows the path of the K computer
- WG (or three WGs....) formed in July 2011
- I am a member of "application WG"
- I proposed to map applications on the plane of B/F and total memory amount
- and proposed three concepts (beside "baseline")

1+3 architectures

Type	B/F	M/F
Baseline	0.1	0.01-0.1
System on Chip	4	10^{-5}
Accelerator	$10^{-3\sim 2}$	0.001 - 0.01
Vector	1	1

What I hope

- Define clear single scientific goal for each architecture plan
- Assign single person as a leader, for at least SoC and accelerator projects