
GRAPE-DR: An accelerator for
scientific computing

Jun Makino
Center for Computational Astrophysics

and
Division Theoretical Astronomy

National Astronomical Observatory of Japan

Who am I?

Current position: Director,
Center for Computational As-
trophysics (CfCA), National
Astronomical Observatory of
Japan
CfCA computers: Cray XT4
(812 quad-core nodes), NEC
SX-9, several GRAPE hard-
wares....

What I have been doing for the last 20 years:
Developing GRAPE and similar hardwares for astrophysical
N -body simulations, using them for research.

Talk structure

• GRAPE hardwares

– GRAPE machines

– Software Issues

• GRAPE-DR

– Architecture

– Comparison with other architecture

– Development status

Short history of GRAPE

• Basic concept

• Application Example

• GRAPE-1 through 6

• Software Perspective

Basic concept (As of 1988)

• With N -body simulation, almost all calculation goes to the
calculation of particle-particle interaction.

• This is true even for schemes like Barnes-Hut treecode or
FMM.

• A simple hardware which calculates the particle-particle
interaction can accelerate overall calculation.

• Original Idea: Chikada (1988)

Host
Computer

GRAPE

Time integration etc. Interaction calculation

Hybrid Architecture Computing

Chikada’s idea (1988)

• Hardwired pipeline for force calculation (similar to Delft
DMDP)

• Hybrid Architecture (things other than force calculation
done elsewhere)

Application: Dark Matter Halos

Problem:
Moore et al 1999

• Galaxy-size
Simulated
Dark-matter
halos contain
far too many
subhalos

• Our galaxy
contain only
∼ 10 satellite
galaxies

• Why?

Our calculation

• “Observe” all simulated halos in one simulation

box

• GRAPE-6A cluster/PC Cluster/Cray XT4

• 5123 — 16003 particles

5123 and 10243 results

10243 movie

file:/home/makino/papers/cfca/tmp/1G_58.mpg

Result

• Large variation

in number of

subhalos

• The richest ones

agree with

Moore’s result

The poorest ones are within a factor of two with

observations

= Dark CDM subhalos are not necessary

Poor and Rich halos

A poor halo

at z=3 (left)

and 0 (right)

A rich halo at

z=3 (left)

and 0 (right)

Performance (On Cray XT4)

 0.1

 1

 10

 100

 1 10 100 1000

T
im

e(
se

c/
st

ep
)

number of CPU cores

5123 Total
5123 PM
5123 PP

2563 Total
2563 PM
2563 PP

10003 Total
10003 PM
10003 PP

Practically linear scaling up to the size of machine

we have (3000 cores)

Galaxy Formation/Merging

Galaxy Formation

Merging

N -body+SPH (Smoothed Particle Hydrodynamics)

file:/home/makino/papers/cfca/tmp/4d2uspiralgalaxy3_640x360.wmv
file:/home/makino/papers/cfca/tmp/Meger2path01.wmv

GRAPE-1 to GRAPE-6

GRAPE-1: 1989, 308Mflops

GRAPE-4: 1995, 1.08Tflops

GRAPE-6: 2002, 64Tflops

Performance history

Since 1995

(GRAPE-4),

GRAPE has been

faster than

general-purpose

computers.

Development cost

was around 1/100.

GRAPE-6 Processor LSI

• 0.25 µm design rule

(Toshiba TC-240,

1.8M gates)

• 90 MHz Clock

• 6 pipeline processors

• 32.4 Gflops / chip

Comparison with a recent Intel
processor

GRAPE-6 Intel Xeon X7460

Year 1999 2008

Design rule 250nm 45nm

Clock 90MHz 2.66GHz

Peak speed 32.4Gflops 64Gflops

Power 10W 130 W

Perf/W 3.24Gflops 0.49 Gflops

Even after 10 years...

Software/Algorithm perspective

• How we develop softwares for GRAPE?

• Is porting (for example from GRAPE-4 to

GRAPE-6) difficult?

• Are programs developed for GRAPE “tied” to

GRAPE hardware?

Software development for GRAPE
GRAPE software library provides several basic functions to use
GRAPE hardware.

• Sends particles to GRAPE board memory

• Sends positions to calculate the force and start calculation

• get the calculated force (asynchronous)

User application programs use these functions.
Algorithm modifications (on program) are necessary to reduce
communication and increase the degree of parallelism
(essentially blocking).

Porting issues (within GRAPE
hardwares)

• Libraries for GRAPE-4 and 6 (for example) are

not compatible

• Even so, porting was not so hard. The calls to

GRAPE libraries are limited to a fairly small

number of places in an entire application code.

Porting issues (to other
architectures)

• Blocked algorithms were originally developed for a vector
architecture (CDC Cyber 205).

• Tuning of these algorithm for GRAPE architecture resulted
in extremely bandwidth-efficient programs.

• GPGPU, CELL, and SIMD features of microprocessors can
be used efficiently once highly-optimized
GRAPE-emulation library is developed for these
architectures (in practice things are more complex....).

• As a result, lots of good work on use of GPGPU for particle
simulations (Hamada, Nitatori, Narumi, Yasuoka, Portegies
Zwart)

Real-World issues with “Porting”
— Mostly on GPGPU....

• Getting something run on GPU is not difficult

• Getting the good performance number compared

with non-optimized, single-core x86 performance

is not so hard.

• Making it faster than 10-year-old GRAPE or

highly-optimized code on x86 (using SSE/SSE2)

is VERY, VERY HARD

• This is *mostly* software issues

• Some of the most serious ones are limitations in

the architecture (lack of good reduction operation

over processors etc)

“Problem” with GRAPE approach

• Chip development cost becomes too high.

Year Machine Chip initial cost process

1992 GRAPE-4 200K$ 1µm

1997 GRAPE-6 1M$ 250nm

2004 GRAPE-DR 4M$ 90nm

2009? GDR2? > 10M$ 45nm?

Initial cost should be 1/4 or less of the total budget.

How we can continue?

Next-Generation GRAPE
— GRAPE-DR

• Planned peak speed: 2 Pflops

• New architecture — wider application range than

previous GRAPEs

• primarily to get funded

• No force pipeline. SIMD programmable processor

• Planned completion year: FY 2008 (early 2009)

Processor architecture

GP Reg
 32W

Local Mem
 256W

T Reg

+

x

M
ultiplexor

M
ultiplexor

INT
ALU

SHMEM
Port

SHMEM
Port

A

B

Mask(M)Reg

PEID
BBID

• Float Mult

• Float add/sub

• Integer ALU

• 32-word registers

• 256-word memory

• communication

port

Chip structure

B
roadcast M

em
ory

Broadcast
same data to
all PEs

Control Processor

(in FPGA chip)

Memory Write Packet
Instruction

Broadcast Block 0

Result output port

External MemoryHost Computer

SING Chip

Result

Result Reduction and Output
Network

any processor
can write (one
at a time

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

 ALU

Register
File

Collection of small

processors.

512 processors on

one chip

500MHz clock

Peak speed of one

chip: 512Gflops (SP)

(256Gflops DP)

Hardware support

for chip-wide

reduction

Why we changed the architecture?

• To get budget (Theoretical Astrophysics is too

narrow...)

• To make machine useful for a wider range of

applications

– Molecular Dynamics

– Boundary Element method

– Dense matrix computation (LINPACK!)

– SPH

• To use a wider range of algorithms

– FMM

– Ahmad-Cohen

Design Decisions and range of
applications
Major design decisions which limits the application range

• Limited external memory bandwidth (4GB/s)

• Limited host communication bandwidth (PCIe x16 Gen 1)

• Limited On-chip memory (in total 1MB)

These decisions are essential in reducing the hardware cost and
power consumption.
Numbers are chosen to be able to run a fairly wide range of
applications, including LINPACK (DGEMM).

Comparison with FPGA

• much better silicon usage (ALUs in custom

circuit, no programmable switching network)

• (possibly) higher clock speed (no programmable

switching network on chip)

• easier to program (no VHDL necessary; assembly

language and compiler instead)

Comparison with GPGPU

Pros:

• Significantly better silicon usage

(512PEs with 90nm)

• Designed for scientific applications

reduction, small communication overhead, etc

Cons:

• Higher cost per silicon area...

(small production quantity)

• Longer product cycle... 5 years vs 1 year

Good implementations of N -body code on GPGPU

are coming (Hamada, Nitadori, Portegies Zwart,

Harris, ...)

Comparison with GPGPU(2)

GRAPE-DR nV G92 AMD FS9170

Design rule 90 65 55

Clock(GHz) 0.5 1.5 0.8

FPUs 512 112 320

SP peak(GF) 512 336 512

DP peak(GF) 256 — ?

Power(W) 65 70? 150?

Power Consumption Comparison

Single-node performance and power consumption

including the host CPU.

GRAPE-DR ClearSpeed IBM

e710 PowerXCell

chips/node 8 (2?) 4 (Tribrade)

DP Peak 2T 0.2T 0.41T

Power (W) 800 300? 700

GFlops/W 2.5 0.67 0.59

How do you use it?

• GRAPE replacement: The necessary software is

now ready. Essentially the same as GRAPE-6.

• Matrix etc ... DGEMM implemented

• Other applications:

– Primitive Compiler available

– For high performance, you need to write the

kernel code in assembly language (for now)

Computation Model

Parallel evaluation of

Ri =
∑
j

f(xi, yj)

• parallel over both i and j

• xj may be omitted (trivial parallelism)

• Si,j =
∑
k

f(xi,k, yk,j) also possible

Primitive compiler
(Nakasato 2006)

/VARI xi, yi, zi, e2;

/VARJ xj, yj, zj, mj;

/VARF fx, fy, fz;

dx = xi - xj;

dy = yi - yj;

dz = zi - zj;

r2 = dx*dx + dy*dy + dz*dz + e2;

r3i= powm32(r2);

ff = mj*r3i;

fx += ff*dx;

fy += ff*dy;

fz += ff*dz;

• Assembly code

• Interface/driver
functions

• SIMD parallel
data distribution

• Data reduction

are generated from
this ”high-level
description”.
(Can be ported to
GPUs)

Interface functions

struct SING_hlt_struct0{

double xi;

double yi;

double zi;

double e2;

};

int SING_send_i_particle(struct SING_hlt_struct0 *ip,

int n);

...

int SING_send_elt_data0(struct SING_elt_struct0 *ip,

int index_in_EM);

...

int SING_get_result(struct SING_result_struct *rp);

int SING_grape_run(int n);

Some characteristic of software

• Parallelization on chip/board is automatic.

• Codes for communication (including reduction)

are generated automatically.

• Data transfer and calculation are automatically

overlapped.

• Same source can run on GPU, FPGA-based

accelerator, etc.

The Chip

Sample chip delivered May 2006

PE Layout

0.7mm by 0.7mm

Black: Local Memory

Red: Reg. File

Orange: FMUL

Green: FADD

Blue: IALU

Chip layout

• 32PEs in 16

groups

• 18mm by 18mm

Processor board block diagram

SINGFPGA
CP

DRAM

SINGFPGA
CP

DRAM

SINGFPGA
CP

DRAM

SINGFPGA
CP

DRAM

PCIe
Switch

x16 PCIe

x4

Processor board

PCIe x16 (Gen 1) interface

Altera Arria GX as DRAM

controller/communication

interface

• Around 250W power

consumption

• Not quite running at

500MHz yet...

(FPGA design not

optimized yet)

• 900Gflops DP peak

(450MHz clock)

• Available from K&F

Computing Research

GRAPE-DR cluster system
Just to show that the system exists...

Host computer: Intel Core 2
Quad Q6600 with nVidia 780i
chipset

8GB memory

Network: IB (4x DDR)

HPC Linpack passed (not tuned
yet....)

The system and (preliminary)
performance numbers submitted
to TOP500

Major concern: Effective host
memory bandwidth

GDR cluster in early 2009

• Majority of board with Gen2 interface (new chip

from PLX)

• Nehalem with 3way DDR3 memory should

resolve potential bandwidth problem.

• IB network

• 800T-1P DP peak range.

GDR-2?

• Current design has rather large room for

improvement, in many places.

• With 45nm, it is not difficult to achieve

– 2 DP Gflops/chip

– 4 SP Tflops/chip

– On-chip memory (16-32MB)

• System cost will be much cheaper.

Summary

• GRAPE-DR, with programmable processors, will

have wider application range than traditional

GRAPEs.

• Small cluster of GDR system is now up and

running

• Should be able to put some number for Nov 11

Top 500

• Peak speed of a card with 4 chips will be 1 Tflops

(DP).

• The system to be completed in early 2009 will

have the peak speed around 1Pflops (DP)

