GRAPE-DR: An accelerator for scientific computing

Jun Makino Center for Computational Astrophysics and Division Theoretical Astronomy National Astronomical Observatory of Japan

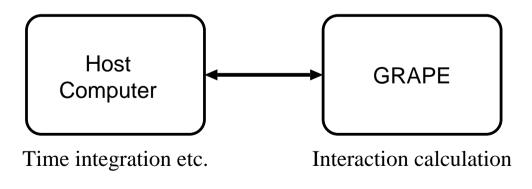
Who am I?

Current position: Director, Center for Computational Astrophysics (CfCA), National Astronomical Observatory of Japan

CfCA computers: Cray XT4 (812 quad-core nodes), NEC SX-9, several GRAPE hardwares....

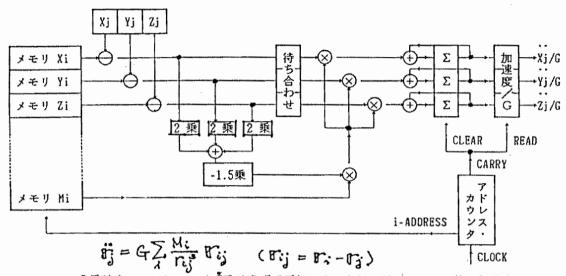
What I have been doing for the last 20 years: Developing GRAPE and similar hardwares for astrophysical *N*-body simulations, using them for research.

Talk structure


- GRAPE hardwares
 - GRAPE machines
 - Software Issues
- GRAPE-DR
 - Architecture
 - Comparison with other architecture
 - Development status

Short history of GRAPE

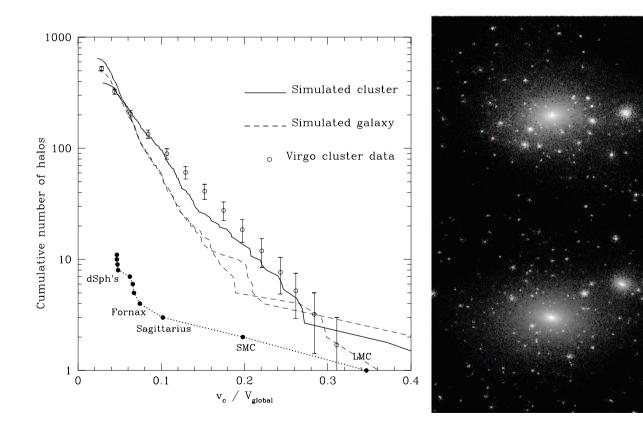
- Basic concept
- Application Example
- GRAPE-1 through 6
- Software Perspective


Basic concept (As of 1988)

- \bullet With N-body simulation, almost all calculation goes to the calculation of particle-particle interaction.
- This is true even for schemes like Barnes-Hut treecode or FMM.
- A simple hardware which calculates the particle-particle interaction can accelerate overall calculation.
- Original Idea: Chikada (1988)

Hybrid Architecture Computing

Chikada's idea (1988)


+, -, ×, 2 築は1 operation, -1.5 築は多項式近似でやるとして10 operation 位に相当する. 総計24operation.

客operation の後にはレジスタがあって、全体がpipelineになっているものとする。 「待ち合わせ」は2乗してMと掛け算する間の時間ズレを補正するためのFIFO(First-In First-Out memory)。 「Σ」は足し込み用のレジスタ、N回足した後結果を右のレジスタに転送する。

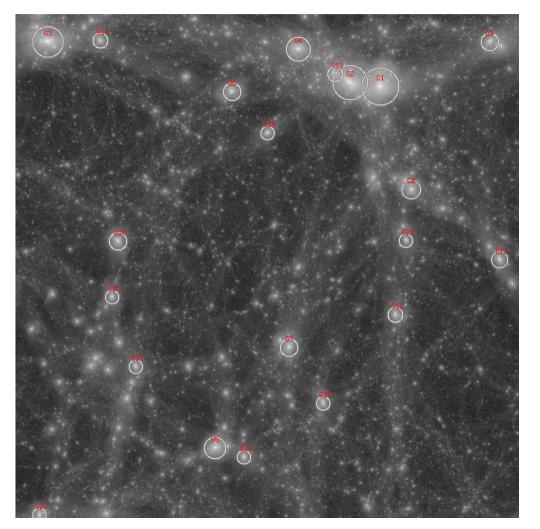
図2.N体問題のj-体に働く重力加速度を計算する回路の概念図.

- Hardwired pipeline for force calculation (similar to Delft DMDP)
- Hybrid Architecture (things other than force calculation done elsewhere)

Application: Dark Matter Halos Problem:

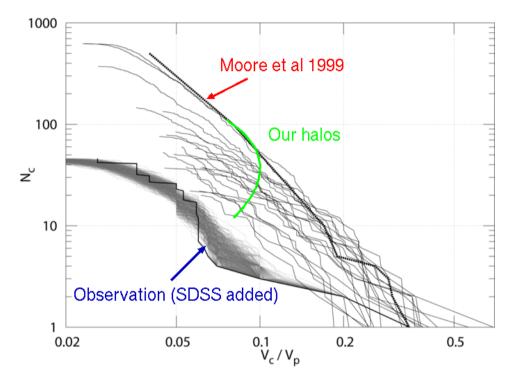
Moore et al 1999

Galaxy-size Simulated Dark-matter halos contain far too many subhalos


Our galaxy contain only ~ 10 satellite galaxies

Why?

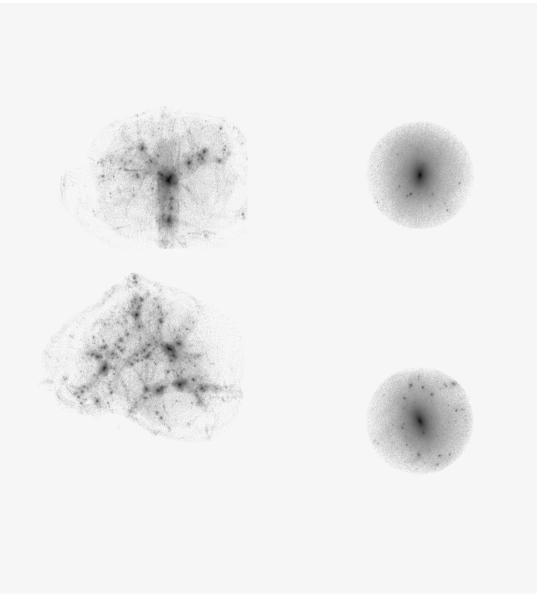
Our calculation


- "Observe" all simulated halos in one simulation box
- GRAPE-6A cluster/PC Cluster/Cray XT4
- $512^3 1600^3$ particles

512^3 and 1024^3 results

 1024^3 movie

Result

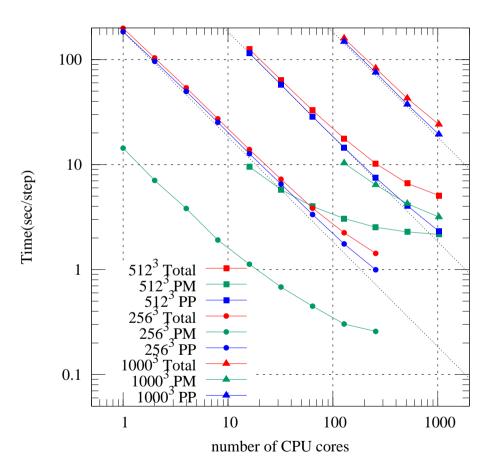

• Large variation in number of subhalos

• The richest ones agree with Moore's result

The poorest ones are within a factor of two with observations

= Dark CDM subhalos are not necessary

Poor and Rich halos



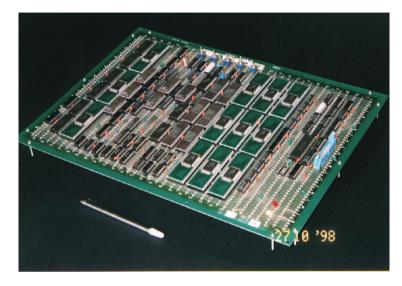
A poor halo at z=3 (left) and 0 (right)

A rich halo at z=3 (left) and 0 (right)

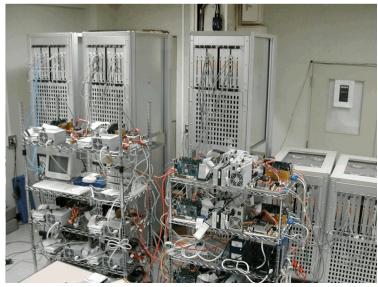
z=0.01 L=2.00Mp

Performance (On Cray XT4)

Practically linear scaling up to the size of machine we have (3000 cores)

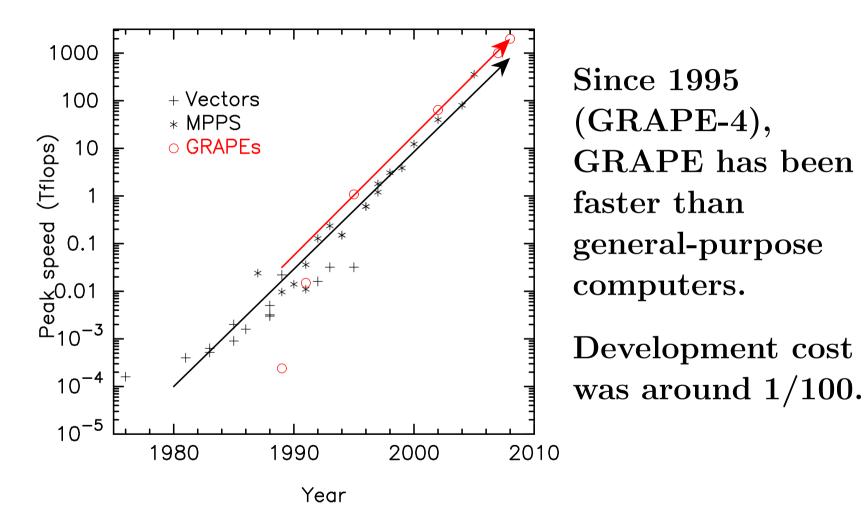

Galaxy Formation/Merging

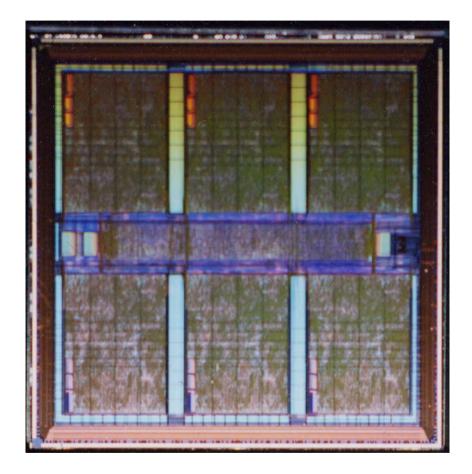
Galaxy Formation


Merging

N-body+SPH (Smoothed Particle Hydrodynamics)

GRAPE-1 to **GRAPE-6**





GRAPE-1: 1989, 308Mflops GRAPE-4: 1995, 1.08Tflops GRAPE-6: 2002, 64Tflops

Performance history

GRAPE-6 Processor LSI

- 0.25 μ m design rule (Toshiba TC-240, 1.8M gates)
- 90 MHz Clock
- 6 pipeline processors
- 32.4 Gflops / chip

Comparison with a recent Intel processor

	GRAPE-6	Intel Xeon X7460
Year	1999	2008
Design rule	$250 \mathrm{nm}$	$45 \mathrm{nm}$
Clock	$90 \mathrm{MHz}$	$2.66 \mathrm{GHz}$
Peak speed	32.4Gflops	64 G flops
Power	10W	$130 \mathrm{W}$
Perf/W	3.24Gflops	0.49 Gflops

Even after 10 years...

Software/Algorithm perspective

- How we develop softwares for GRAPE?
- Is porting (for example from GRAPE-4 to GRAPE-6) difficult?
- Are programs developed for GRAPE "tied" to GRAPE hardware?

Software development for GRAPE

GRAPE software library provides several basic functions to use GRAPE hardware.

- Sends particles to GRAPE board memory
- Sends positions to calculate the force and start calculation
- get the calculated force (asynchronous)

User application programs use these functions. Algorithm modifications (on program) are necessary to reduce communication and increase the degree of parallelism (essentially blocking).

Porting issues (within GRAPE hardwares)

- Libraries for GRAPE-4 and 6 (for example) are not compatible
- Even so, porting was not so hard. The calls to GRAPE libraries are limited to a fairly small number of places in an entire application code.

Porting issues (to other architectures)

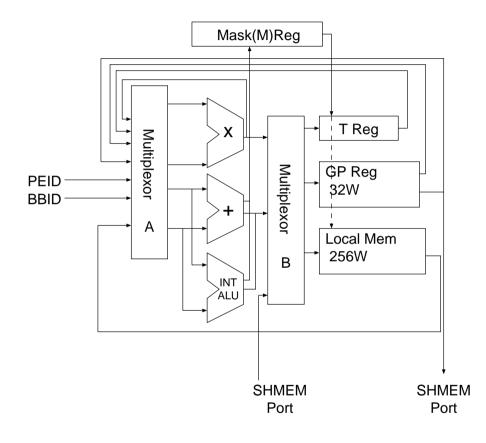
- Blocked algorithms were originally developed for a vector architecture (CDC Cyber 205).
- Tuning of these algorithm for GRAPE architecture resulted in extremely bandwidth-efficient programs.
- GPGPU, CELL, and SIMD features of microprocessors can be used efficiently once highly-optimized GRAPE-emulation library is developed for these architectures (in practice things are more complex....).
- As a result, lots of good work on use of GPGPU for particle simulations (Hamada, Nitatori, Narumi, Yasuoka, Portegies Zwart)

Real-World issues with "Porting"

- Mostly on GPGPU....
 - Getting something run on GPU is not difficult
 - Getting the good performance number compared with non-optimized, single-core x86 performance is not so hard.
 - Making it faster than 10-year-old GRAPE or highly-optimized code on x86 (using SSE/SSE2) is *VERY*, *VERY* HARD
 - This is *mostly* software issues
 - Some of the most serious ones are limitations in the architecture (lack of good reduction operation over processors etc)

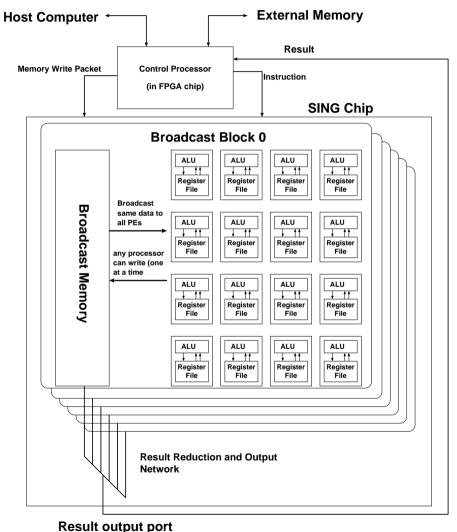
"Problem" with GRAPE approach

• Chip development cost becomes too high.


Year	Machine	Chip initial cost	process
1992	GRAPE-4	200K\$	$1 \mu { m m}$
$\boldsymbol{1997}$	GRAPE-6	1M\$	$250 \mathrm{nm}$
2004	GRAPE-DR	4M\$	90nm
2009?	GDR2?	> 10 M\$	$45 \mathrm{nm}?$

Initial cost should be 1/4 or less of the total budget. How we can continue?

Next-Generation GRAPE — GRAPE-DR


- Planned peak speed: 2 Pflops
- New architecture wider application range than previous GRAPEs
- primarily to get funded
- No force pipeline. SIMD programmable processor
- Planned completion year: FY 2008 (early 2009)

Processor architecture

- Float Mult
- Float add/sub
- Integer ALU
- 32-word registers
- 256-word memory
- communication port

Chip structure

Collection of small processors.

512 processors on one chip 500MHz clock

Peak speed of one chip: **512Gflops (SP)** (256Gflops DP)

Hardware support for chip-wide reduction

Why we changed the architecture?

- To get budget (Theoretical Astrophysics is too narrow...)
- To make machine useful for a wider range of applications
 - Molecular Dynamics
 - Boundary Element method
 - Dense matrix computation (LINPACK!)
 - SPH
- To use a wider range of algorithms
 - \mathbf{FMM}
 - Ahmad-Cohen

Design Decisions and range of applications

Major design decisions which limits the application range

- Limited external memory bandwidth (4GB/s)
- Limited host communication bandwidth (PCIe x16 Gen 1)
- Limited On-chip memory (in total 1MB)

These decisions are essential in reducing the hardware cost and power consumption.

Numbers are chosen to be able to run a fairly wide range of applications, including LINPACK (DGEMM).

Comparison with FPGA

- much better silicon usage (ALUs in custom circuit, no programmable switching network)
- (possibly) higher clock speed (no programmable switching network on chip)
- easier to program (no VHDL necessary; assembly language and compiler instead)

Comparison with GPGPU

Pros:

- Significantly better silicon usage (512PEs with 90nm)
- Designed for scientific applications reduction, small communication overhead, etc

Cons:

- Higher cost per silicon area... (small production quantity)
- Longer product cycle... 5 years vs 1 year

Good implementations of *N*-body code on GPGPU are coming (Hamada, Nitadori, Portegies Zwart, Harris, ...)

Comparison with GPGPU(2)

	GRAPE-DR	nV G92	AMD FS9170
Design rule	90	65	55
${ m Clock}({ m GHz})$	0.5	1.5	0.8
$\# \mathrm{FPUs}$	512	112	320
${ m SP} \ { m peak}({ m GF})$	512	336	512
${ m DP} \ { m peak}({ m GF})$	256		?
$\operatorname{Power}(W)$	65	70?	150?

Power Consumption Comparison

Single-node performance and power consumption including the host CPU.

	GRAPE-DR	ClearSpeed	IBM
		e710	PowerXCell
chips/node	8	(2?)	4 (Tribrade)
DP Peak	$2\mathrm{T}$	$0.2\mathrm{T}$	0.41T
Power (W)	800	300?	700
m GFlops/W	2.5	0.67	0.59

How do you use it?

- GRAPE replacement: The necessary software is now ready. Essentially the same as GRAPE-6.
- Matrix etc ... DGEMM implemented
- Other applications:
 - Primitive Compiler available
 - For high performance, you need to write the kernel code in assembly language (for now)

Computation Model

Parallel evaluation of

$$R_i = \sum\limits_j f(x_i,y_j)$$

- \bullet parallel over both i and j
- x_j may be omitted (trivial parallelism)

$$ullet$$
 $S_{i,j} = \sum\limits_k f(x_{i,k},y_{k,j})$ also possible

Primitive compiler

(Nakasato 2006)

```
/VARI xi, yi, zi, e2;
/VARJ xj, yj, zj, mj;
/VARF fx, fy, fz;
dx = xi - xj;
dy = yi - yj;
dz = zi - zj;
r2 = dx*dx + dy*dy + dz*dz + e2;
r3i= powm32(r2);
ff = mj * r3i;
fx += ff*dx;
fy += ff*dy;
fz += ff*dz;
```

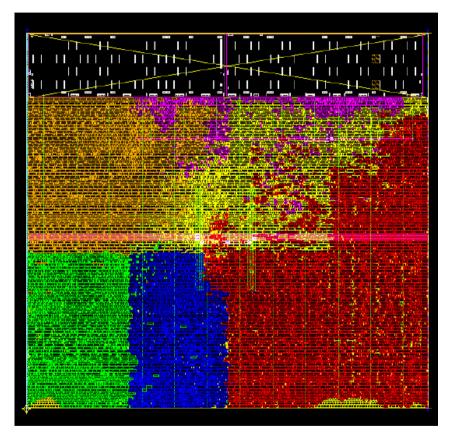
- Assembly code
- Interface/driver functions
- SIMD parallel data distribution
- Data reduction

are generated from this "high-level description". (Can be ported to GPUs)

Interface functions

```
struct SING hlt struct0{
  double xi;
  double yi;
  double zi;
  double e2;
};
int SING_send_i_particle(struct SING_hlt_struct0 *ip,
                          int n);
. . .
int SING_send_elt_data0(struct SING_elt_struct0 *ip,
                         int index_in_EM);
. . .
int SING_get_result(struct SING_result_struct *rp);
int SING_grape_run(int n);
```

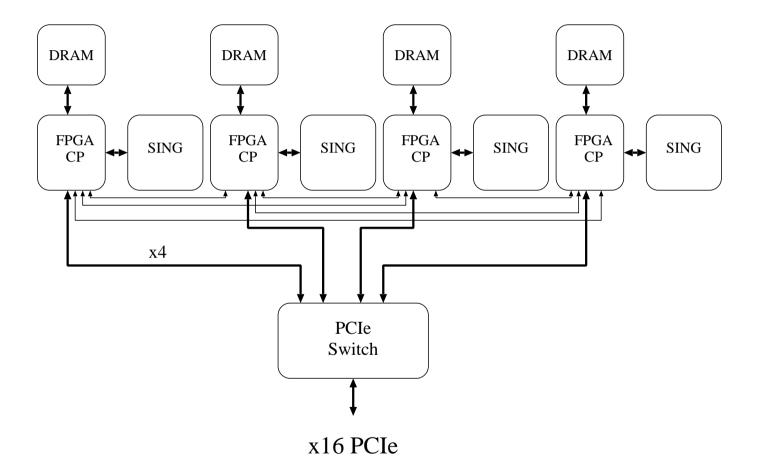
Some characteristic of software


- Parallelization on chip/board is automatic.
- Codes for communication (including reduction) are generated automatically.
- Data transfer and calculation are automatically overlapped.
- Same source can run on GPU, FPGA-based accelerator, etc.

The Chip

Sample chip delivered May 2006

PE Layout


0.7mm by 0.7mm Black: Local Memory Red: Reg. File Orange: FMUL Green: FADD Blue: IALU

Chip layout

-			<u></u>				<u> </u>	1. 1. 1	uų				1							1				. 1. 1.	
ł		FEDD	PE01	PE 07	PE03	PE04	PE D4	PED3	PEO2	PEQI	FEOD				PE 00	PEQI	PEQZ	PEQO	PEGA	FED4	FED3	FEOZ	PEOI	PEOD	L
	PEDS	PEDB	PE07	PE OB	PEOP	PE 10	PE 10	PED9	PEDS	FE07	FEOG	FE05	E	FEOD	FE CO	PE07	PEOB	PEQP	PE 10	PE 10	PEDB	PEOB	PE 07	PE06	PE05
	PEII	PE12	PE10	PE14	PE 15	PE16	PE 16	PE 15	PE 14	PE13	PE12	PE11	F	PE11	PE12	PE13	PE14	PE15	PE18	PE 16	PE 10	PE 14	PE 10	PEIZ	FEII
	PE 17	PC 16	PE 19		PEZI	PE77	PE22	PE21		PE 19	-	PE17	÷	PE 17		PE19		-	PE22	FEZZ	PE21		PE 19	PE 18	PE 17
	PE23	PE24	PE25		FE27	FE28	PE28			L.		PE 23		PE 23	PE 74	PE25		FC27	PE28	PE 26	PE27		FE 25	FE24	PE23
	PE	78 PE3	D PE31	PE 20	PE25			PEZ6	PE ZO	PE31 F	E 30 F	£ 79		PEZ	9 PE 3	O PESI	FE ZD	FE 26			PE26	PE20	PE31 P	E 30 P	E 29
-	PE:	70 PE 2	D PE31	PE 20	PEZE			PEZE	PE 20	PE31 F	£30 F	₹Z₽		PEZ	9 PE3	0 PESI	PE 20	PE ZB			PE26	PE20	PE31 P	E 30 P	E 79
	FE 73	FE 74	FE 75		PE77	PE78	PE 78	PE I7		FE 75	FE 74	FE ZO		FE ZO	PE 74	PEZO		PC27	PEZB	FE 78	FE 27		PE 25	PE74	PEZO
	PE 17	PC18	PE 19		PE21	PE22	PE22	FE 21		PE 19	PE 12	PE17	1	PE 17	PE 18	PE 19		PE21	PE22	PE22	PE21		PE 19	PE 15	PE 17
	PE 11	PE 12	PE18	PE14	PE15	PE18	FE 16	FE 15	FE 14	PE13	PE 12	PE11		PE11	-	PE13	PE 14	-	PE 16	—	PC 15	-	PE13		
	PEDS	PEDE	PE07	PEOB	PE09	PE10	PE 10	PED®	FEDS	PED7	PEOB	PE 05		PE 05	PE 06	PE07	PEOB	FEOP	PE 1D	PE 10	PEDP	PEOB	PE 07	PE06	PE05
		PEDD	PE01	PE 02	PEO3	PE04	PED4	PED3	PE D2	PEOI	PEOD	Filed a		STYL ST	PE 00	FE01	PE02	FEOD	FECH	PE D4	PED3	PE 02	PE01	PE00	
	2	PEDD	PE01	PE 02	PEO3	PE04	FED4	PE DO	PED2	PEOI	PEOD				PE 00	PE01	PE02	FEOD	FEC4	PE D4	PED3	PE 02	PE01	PEOD	
	PEDS	PEDE	PE 07	PE OB	PEOP	PE10	PE 10	PEDØ	PEDS	PED7	PEOB	PE 05		PE 05	PE 06	PE07	PEOB	FEOP	PE 10	PE 10	PEDE	PEOB	PE 07	PEOF	PE05
	PE11	PE 12	PE13	PE14	PE15	PE 16	PE 16	PE 15	PE 14	PE13	PE 12	PE11		PE11	PE12	PE13	PE 14	PE15	PE16	PE 16	PE 16	PE14	PE10	PE12	FE11
	PE 17	-	PE 19		PEZI	PC 22	PE 22	PE 21		PE 19	PE 18	PE 17		PE 17	PE 18	PE 18		PEZI	PE27	FE 72	PE21		PE 18	PE18	PE 17
-	PE 23	PE 24	PE25		PE27	PE28	PE 28	PE 27		PE25	PE 24	PE23		PE23	PE24	PE25.		PE27	PE28	PE 28	PE 27		PE25	PE24	PE23
	PE	28 962	D PE31	PE 20	PE 26			FE26	PE20	FE31 P	£30 P	E 2 P		PE2	e PEJ	O PE31	PE 2D	PE 26	- 11- - 12-14 - 12-14		PE26	PE20	PE31 P	E 30 P	£28
1	PE	29 PE2	0 PE31	PE 20	PE 26			PE26	PE20	PE31 P	E 30 P	£29	ų	PE2	9 PE3	0 PE31	PE 20	PE 28			PE26	PE20	PE31 P	E30 P	E29
	PE 23	PE 24	PE 25		PE27	PE2B	PE 28	PE 27		PE 25	PE 24	PE 23	1	PE 23	PE 24	PE 25		FE27	PE28	PE 26	PE 27		PE 25	PE24	PE23
	PE 17	PE 18	PE 19		PEZI	PEZZ	PEZZ	PE 21		PE 19	PE 18	PE17		PE 17	PE 18	PE 10		PEZI	PE27	FEZZ	PE21		PE 18	PE18	PE17
-	PE11	PE12	PE 13	PE14	PE 15	PE16	PE 16	FE 10	PE 14	PE18	PE 12	PE11	31	PE 11	PE12	PE 13	PE 14	PE15	PE 16	PE 16	PE 16	PE14	PE 13	PE12	FE 11
	PE 05	FEO6		-	:	PE 10	PE 10	PE 09	PEOS	PE07	PE 06	PE 05		PE 05	PE 08	PE07	PEOB	PEOP	PE10	-	FE09			PE06	PE05
		FEOD	PEGI	PE 07	PE03	PEQ4	PEOM	PE03	PE 02	PEO1	FE OD				PE 00	PE01	PE02	PE03	PECH	FE (14	FED3	FEOT	PE¢1	PECO	
	0 I.		1.1.1			t t t				TT		11	T I				Π.							11	T i in

- 32PEs in 16 groups
- 18mm by 18mm

Processor board block diagram

Processor board

PCIe x16 (Gen 1) interface Altera Arria GX as DRAM controller/communication interface

- Around 250W power consumption
- Not quite running at 500MHz yet... (FPGA design not optimized yet)
- 900Gflops DP peak (450MHz clock)
- Available from K&F Computing Research

GRAPE-DR cluster system

Just to show that the system exists...

Host computer: Intel Core 2 Quad Q6600 with nVidia 780i chipset

8GB memory

Network: IB (4x DDR)

HPC Linpack passed (not tuned yet....)

The system and (preliminary) performance numbers submitted to TOP500

Major concern: Effective host memory bandwidth

GDR cluster in early 2009

- Majority of board with Gen2 interface (new chip from PLX)
- Nehalem with 3way DDR3 memory should resolve potential bandwidth problem.
- IB network
- 800T-1P DP peak range.

GDR-2?

- Current design has rather large room for improvement, in many places.
- With 45nm, it is not difficult to achieve
 - -2 DP Gflops/chip
 - -4 SP Tflops/chip
 - On-chip memory (16-32MB)
- System cost will be much cheaper.

Summary

- GRAPE-DR, with programmable processors, will have wider application range than traditional GRAPEs.
- Small cluster of GDR system is now up and running
- Should be able to put some number for Nov 11 Top 500
- Peak speed of a card with 4 chips will be 1 Tflops (DP).
- The system to be completed in early 2009 will have the peak speed around 1Pflops (DP)